Search results
Results From The WOW.Com Content Network
In this situation, there is a distinction between "optical band gap" and "electronic band gap" (or "transport gap"). The optical bandgap is the threshold for photons to be absorbed, while the transport gap is the threshold for creating an electron–hole pair that is not bound together. The optical bandgap is at lower energy than the transport gap.
In semiconductors, the band gap of a semiconductor can be of two basic types, a direct band gap or an indirect band gap. The minimal-energy state in the conduction band and the maximal-energy state in the valence band are each characterized by a certain crystal momentum (k-vector) in the Brillouin zone. If the k-vectors are different, the ...
The major obstacle in operating an optical clock was the difficulty of directly measuring optical frequencies. Before the demonstration of the frequency comb in 2000, terahertz techniques were needed to bridge the gap between radio and optical frequencies, and the systems for doing so were cumbersome and complicated.
In a semiconductor or band insulator, the Fermi level is surrounded by a band gap, referred to as the band gap (to distinguish it from the other band gaps in the band structure). The closest band above the band gap is called the conduction band, and the closest band beneath the band gap is called the valence band.
Since the change in band gap only occurs on the surface of the (semi)conductor, optical properties will not change in the core of bulk materials, but for very thin films, where almost all particles can be found at the surface, the optical properties can change: absorption or transmittance of certain wavelengths depending on the strength of the ...
In the simplest description of a semiconductor, a single parameter is used to quantify the onset of optical absorption: the band gap, . In this description, semiconductors are described as being able to absorb photons above E G {\displaystyle E_{G}} , but are transparent to photons below E G {\displaystyle E_{G}} . [ 2 ]
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
Thus, extrapolating this linear region to the abscissa yields the energy of the optical bandgap of the amorphous material. A similar procedure is adopted to determine the optical bandgap of crystalline semiconductors. [5] In this case, however, the ordinate is given by (α) 1/r, in which the exponent 1/r denotes the nature of the transition: [6 ...