Search results
Results From The WOW.Com Content Network
In geometry, a pentahedron (pl.: pentahedra) is a polyhedron with five faces or sides. There are no face-transitive polyhedra with five sides and there are two distinct topological types. With regular polygon faces, the two topological forms are the square pyramid and triangular prism.
[W] Wenninger, 1974, has 119 figures: 1–5 for the Platonic solids, 6–18 for the Archimedean solids, 19–66 for stellated forms including the 4 regular nonconvex polyhedra, and ended with 67–119 for the nonconvex uniform polyhedra.
In geometry, a Platonic solid is a convex, regular polyhedron in three-dimensional Euclidean space.Being a regular polyhedron means that the faces are congruent (identical in shape and size) regular polygons (all angles congruent and all edges congruent), and the same number of faces meet at each vertex.
A regular polyhedron is identified by its Schläfli symbol of the form {n, m}, where n is the number of sides of each face and m the number of faces meeting at each vertex. There are 5 finite convex regular polyhedra (the Platonic solids), and four regular star polyhedra (the Kepler–Poinsot polyhedra), making nine regular polyhedra in all. In ...
In solid geometry, a face is a flat surface (a planar region) that forms part of the boundary of a solid object; [1] a three-dimensional solid bounded exclusively by faces is a polyhedron. A face can be finite like a polygon or circle, or infinite like a half-plane or plane. [2]
This means that for any two faces, A and B, there is a rotation or reflection of the solid that leaves it occupying the same region of space while moving face A to face B. The rhombic triacontahedron is somewhat special in being one of the nine edge-transitive convex polyhedra, the others being the five Platonic solids , the cuboctahedron , the ...
Some Archimedean solids were portrayed in the works of artists and mathematicians during the Renaissance. The elongated square gyrobicupola or pseudorhombicuboctahedron is an extra polyhedron with regular faces and congruent vertices, but it is not generally counted as an Archimedean solid because it is not vertex-transitive.
This means that each edge contains two vertices and belongs to two faces, and that each vertex on a face belongs to two edges of that face.) Geometric polyhedra, defined in other ways, can be described abstractly in this way, but it is also possible to use abstract polyhedra as the basis of a definition of geometric polyhedra.