Search results
Results From The WOW.Com Content Network
Voltage standing wave ratio (VSWR) (pronounced "vizwar" [1] [2]) is the ratio of maximum to minimum voltage on a transmission line . For example, a VSWR of 1.2 means a peak voltage 1.2 times the minimum voltage along that line, if the line is at least one half wavelength long.
In telecommunications and transmission line theory, the reflection coefficient is the ratio of the complex amplitude of the reflected wave to that of the incident wave. The voltage and current at any point along a transmission line can always be resolved into forward and reflected traveling waves given a specified reference impedance Z 0.
A directional SWR meter measures the magnitude of the forward and reflected waves by sensing each one individually, with directional couplers. A calculation then produces the SWR. A simple directional SWR meter. Referring to the above diagram, the transmitter (TX) and antenna (ANT) terminals connect via an internal transmission line.
where RL(dB) is the return loss in dB, P i is the incident power and P r is the reflected power. Return loss is related to both standing wave ratio (SWR) and reflection coefficient (Γ). Increasing return loss corresponds to lower SWR. Return loss is a measure of how well devices or lines are matched. A match is good if the return loss is high.
The horn shape that gives minimum reflected power is an exponential taper. [12] Exponential horns are used in special applications that require minimum signal loss, such as satellite antennas and radio telescopes. However conical and pyramidal horns are most widely used, because they have straight sides and are easier to design and fabricate.
Impedance discontinuities cause attenuation, attenuation distortion, standing waves, ringing and other effects because a portion of a transmitted signal will be reflected back to the transmitting device rather than continuing to the receiver, much like an echo. This effect is compounded if multiple discontinuities cause additional portions of ...
The antenna gain, or power gain of an antenna is defined as the ratio of the intensity (power per unit surface area) radiated by the antenna in the direction of its maximum output, at an arbitrary distance, divided by the intensity radiated at the same distance by a hypothetical isotropic antenna which radiates equal power in all directions.
That is the linear ratio of the output reflected power wave divided by the input incident power wave, all values expressed as complex quantities. For lossy networks it is sub-unitary, for active networks | | >. It will be equal with the voltage gain only when the device has equal input and output impedances.