Search results
Results From The WOW.Com Content Network
If the magnetic field is constant, the magnetic flux passing through a surface of vector area S is = = , where B is the magnitude of the magnetic field (the magnetic flux density) having the unit of Wb/m 2 , S is the area of the surface, and θ is the angle between the magnetic field lines and the normal (perpendicular) to S.
For a magnetic component the area S used to calculate the magnetic flux Φ is usually chosen to be the cross-sectional area of the component. The SI unit of magnetic flux is the weber (in derived units: volt-seconds), and the unit of magnetic flux density (or "magnetic induction", B) is the weber per square meter, or tesla.
Position vector r is a point to calculate the electric ... 1,2 subscripts refer to two conductors/inductors mutually inducing voltage/ linking magnetic flux through ...
Steinmetz's equation, sometimes called the power equation, [1] is an empirical equation used to calculate the total power loss (core losses) per unit volume in magnetic materials when subjected to external sinusoidally varying magnetic flux.
The magnetic flux density (magnetic field) having the unit Wb/m 2 is denoted by B, and magnetic flux is defined analogously: [13] [14] = with the same notation above. The quantity arises in Faraday's law of induction , where the magnetic flux is time-dependent either because the boundary is time-dependent or magnetic field is time-dependent.
The magnetic field (B, green) is directed down through the plate. The Lorentz force of the magnetic field on the electrons in the metal induces a sideways current under the magnet. The magnetic field, acting on the sideways moving electrons, creates a Lorentz force opposite to the velocity of the sheet, which acts as a drag force on the sheet.
In electromagnetics, the term magnetic field is used for two distinct but closely related vector fields denoted by the symbols B and H. In the International System of Units, the unit of B, magnetic flux density, is the tesla (in SI base units: kilogram per second squared per ampere), [5]: 21 which is equivalent to newton per meter
The weber may be defined in terms of Faraday's law, which relates a changing magnetic flux through a loop to the electric field around the loop. A change in flux of one weber per second will induce an electromotive force of one volt (produce an electric potential difference of one volt across two open-circuited terminals).