When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Maximum and minimum - Wikipedia

    en.wikipedia.org/wiki/Maximum_and_minimum

    The definition of global minimum point also proceeds similarly. If the domain X is a metric space, then f is said to have a local (or relative) maximum point at the point x ∗, if there exists some ε > 0 such that f(x ∗) ≥ f(x) for all x in X within distance ε of x ∗.

  3. Second partial derivative test - Wikipedia

    en.wikipedia.org/wiki/Second_partial_derivative_test

    The following test can be applied at any critical point a for which the Hessian matrix is invertible: If the Hessian is positive definite (equivalently, has all eigenvalues positive) at a, then f attains a local minimum at a. If the Hessian is negative definite (equivalently, has all eigenvalues negative) at a, then f attains a local maximum at a.

  4. Local property - Wikipedia

    en.wikipedia.org/wiki/Local_property

    Perhaps the best-known example of the idea of locality lies in the concept of local minimum (or local maximum), which is a point in a function whose functional value is the smallest (resp., largest) within an immediate neighborhood of points. [1]

  5. Derivative test - Wikipedia

    en.wikipedia.org/wiki/Derivative_test

    After establishing the critical points of a function, the second-derivative test uses the value of the second derivative at those points to determine whether such points are a local maximum or a local minimum. [1] If the function f is twice-differentiable at a critical point x (i.e. a point where f ′ (x) = 0), then:

  6. Critical point (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Critical_point_(mathematics)

    A critical point (where the function is differentiable) may be either a local maximum, a local minimum or a saddle point. If the function is at least twice continuously differentiable the different cases may be distinguished by considering the eigenvalues of the Hessian matrix of second derivatives.

  7. Stationary point - Wikipedia

    en.wikipedia.org/wiki/Stationary_point

    A turning point of a differentiable function is a point at which the derivative has an isolated zero and changes sign at the point. [2] A turning point may be either a relative maximum or a relative minimum (also known as local minimum and maximum). A turning point is thus a stationary point, but not all stationary points are turning points.

  8. Line search - Wikipedia

    en.wikipedia.org/wiki/Line_search

    At each iteration, there is a set of "working points" in which we know the value of f (and possibly also its derivative). Based on these points, we can compute a polynomial that fits the known values, and find its minimum analytically. The minimum point becomes a new working point, and we proceed to the next iteration: [1]: sec.5

  9. Energy profile (chemistry) - Wikipedia

    en.wikipedia.org/wiki/Energy_profile_(chemistry)

    A point may be local minimum when it is lower in energy compared to its surrounding only or a global minimum which is the lowest energy point on the entire potential energy surface. Saddle point represents a maximum along only one direction (that of the reaction coordinate) and is a minimum along all other directions. In other words, a saddle ...