Search results
Results From The WOW.Com Content Network
The word "mass" has two meanings in special relativity: invariant mass (also called rest mass) is an invariant quantity which is the same for all observers in all reference frames, while the relativistic mass is dependent on the velocity of the observer.
According to behavioral momentum theory, the relation between response rate and resistance to change is analogous to the relation between velocity and mass of a moving object, according to Newton's second law of motion (Nevin, Mandell & Atak, 1983). Newton's second law states that the change in velocity of an object when a force is applied is ...
[p. 21] When in the limit v = c, the increase in mass is infinite, thus a charged sphere moving with the velocity of light behaves as if its mass were infinite, its velocity therefore will remain constant, in other words it is impossible to increase the velocity of a charged body moving through the dielectric beyond that of light.
The mass of an object as measured in its own frame of reference is called its rest mass or invariant mass and is sometimes written . If an object moves with velocity v {\displaystyle \mathbf {v} } in some other reference frame, the quantity m = γ ( v ) m 0 {\displaystyle m=\gamma (\mathbf {v} )m_{0}} is often called the object's "relativistic ...
In these frameworks, two kinds of mass are defined: rest mass (invariant mass), [note 9] and relativistic mass (which increases with velocity). Rest mass is the Newtonian mass as measured by an observer moving along with the object. Relativistic mass is the total quantity of energy in a body or system divided by c 2. The two are related by the ...
= is the escape velocity, and β e = v e / c {\displaystyle \beta _{e}=v_{e}/c} is the escape velocity, expressed as a fraction of the speed of light c. To illustrate then, without accounting for the effects of rotation, proximity to Earth's gravitational well will cause a clock on the planet's surface to accumulate around 0.0219 fewer seconds ...
The concepts invoked in Newton's laws of motion — mass, velocity, momentum, force — have predecessors in earlier work, and the content of Newtonian physics was further developed after Newton's time. Newton combined knowledge of celestial motions with the study of events on Earth and showed that one theory of mechanics could encompass both.
Some of the tests of the equivalence principle use names for the different ways mass appears in physical formulae. In nonrelativistic physics three kinds of mass can be distinguished: [14] Inertial mass intrinsic to an object, the sum of all of its mass–energy. Passive mass, the response to gravity, the object's weight.