Search results
Results From The WOW.Com Content Network
The Large Underground Xenon experiment (LUX) aimed to directly detect weakly interacting massive particle (WIMP) dark matter interactions with ordinary matter on Earth. . Despite the wealth of (gravitational) evidence supporting the existence of non-baryonic dark matter in the Universe, [1] dark matter particles in our galaxy have never been directly detected in an expe
The categories of dark matter are set with respect to the size of a protogalaxy (an object that later evolves into a dwarf galaxy): dark matter particles are classified as cold, warm, or hot if their FSL is much smaller (cold), similar to (warm), or much larger (hot) than a protogalaxy.
Dark matter is called ‘dark’ because it’s invisible to us and does not measurably interact with anything other than gravity. It could be interspersed between the atoms that make up the Earth ...
The results show that cold dark matter produces a reasonable match to observations, but hot dark matter does not. The sky at energies above 100 MeV observed by the Energetic Gamma Ray Experiment Telescope (EGRET) of the Compton Gamma Ray Observatory (CGRO) satellite (1991–2000). 1988 – The CfA2 Great Wall is discovered in the CfA2 redshift ...
Based on the 2013 data, the universe contains 4.9% ordinary matter, 26.8% dark matter and 68.3% dark energy. On 5 February 2015, new data was released by the Planck mission, according to which the age of the universe is 13.799 ± 0.021 billion years old and the Hubble constant was measured to be 67.74 ± 0.46 (km/s)/Mpc .
The Axion Dark Matter Experiment (ADMX, also written as Axion Dark Matter eXperiment in the project's documentation) is an experiment that uses a resonant microwave cavity within a large superconducting magnet to search for cold dark matter axions in the local galactic dark matter halo. Unusual for a dark matter detector, it is not located deep ...
During the 1980s, most research focused on cold dark matter with critical density in matter, around 95% CDM and 5% baryons: these showed success at forming galaxies and clusters of galaxies, but problems remained; notably, the model required a Hubble constant lower than preferred by observations, and observations around 1988–1990 showed more ...
It is due to dark matter that galaxies are able to keep their shape, with the mass of dark matter creating enough gravitational force to hold the stars that make up a galaxy together. Dark energy, however, is a substance or force responsible for the accelerating expansion of the universe over time. [2]