Search results
Results From The WOW.Com Content Network
However, in most fielded systems, unwanted clutter and interference sources mean that the noise level changes both spatially and temporally. In this case, a changing threshold can be used, where the threshold level is raised and lowered to maintain a constant probability of false alarm. This is known as constant false alarm rate (CFAR) detection.
The normal deviate mapping (or normal quantile function, or inverse normal cumulative distribution) is given by the probit function, so that the horizontal axis is x = probit(P fa) and the vertical is y = probit(P fr), where P fa and P fr are the false-accept and false-reject rates.
The true-positive rate is also known as sensitivity or probability of detection. [1] The false-positive rate is also known as the probability of false alarm [1] and equals (1 − specificity). The ROC is also known as a relative operating characteristic curve, because it is a comparison of two operating characteristics (TPR and FPR) as the ...
The False Discovery Rate - Yoav Benjamini, Ruth Heller & Daniel Yekutieli - Rousseeuw Prize for Statistics ceremony lecture from 2024. False Discovery Rate: Corrected & Adjusted P-values - MATLAB/GNU Octave implementation and discussion on the difference between corrected and adjusted FDR p-values. Understanding False Discovery Rate - blog post
where [] is the input as a function of the independent variable , and [] is the filtered output. Though we most often express filters as the impulse response of convolution systems, as above (see LTI system theory ), it is easiest to think of the matched filter in the context of the inner product , which we will see shortly.
As a result, the false positive rate for duplicate detection is the same as the false positive rate of the used bloom filter. The process of filtering out the most 'unique' elements can also be repeated multiple times by changing the hash function in each filtering step.
Fault detection, isolation, and recovery (FDIR) is a subfield of control engineering which concerns itself with monitoring a system, identifying when a fault has occurred, and pinpointing the type of fault and its location. Two approaches can be distinguished: A direct pattern recognition of sensor readings that indicate a fault and an analysis ...
The Viola–Jones object detection framework is a machine learning object detection framework proposed in 2001 by Paul Viola and Michael Jones. [ 1 ] [ 2 ] It was motivated primarily by the problem of face detection , although it can be adapted to the detection of other object classes.