Search results
Results From The WOW.Com Content Network
SymPy is an open-source Python library for symbolic computation. It provides computer algebra capabilities either as a standalone application, as a library to other applications, or live on the web as SymPy Live [2] or SymPy Gamma. [3] SymPy is simple to install and to inspect because it is written entirely in Python with few dependencies.
A vector space with a specified norm is called a normed vector space. In a similar manner, a vector space with a seminorm is called a seminormed vector space. The term pseudonorm has been used for several related meanings. It may be a synonym of "seminorm". [1]
SymbolicC++ is a general purpose computer algebra system written in the programming language C++. It is free software released under the terms of the GNU General Public License. SymbolicC++ is used by including a C++ header file or by linking against a library.
Provides tools for solving and manipulating symbolic math expressions and performing variable-precision arithmetic. SymPy: Ondřej Čertík 2006 2007 1.13.2: 11 August 2024: Free modified BSD license: Python-based TI-Nspire CAS (Computer Software) Texas Instruments: 2006 2009 5.1.3: 2020 Proprietary: Successor to Derive.
An inner product space is a normed vector space whose norm is the square root of the inner product of a vector and itself. The Euclidean norm of a Euclidean vector space is a special case that allows defining Euclidean distance by the formula d ( A , B ) = ‖ A B → ‖ . {\displaystyle d(A,B)=\|{\overrightarrow {AB}}\|.}
In mathematics, the operator norm measures the "size" of certain linear operators by assigning each a real number called its operator norm. Formally, it is a norm defined on the space of bounded linear operators between two given normed vector spaces .
NumPy (pronounced / ˈ n ʌ m p aɪ / NUM-py) is a library for the Python programming language, adding support for large, multi-dimensional arrays and matrices, along with a large collection of high-level mathematical functions to operate on these arrays. [3]
With the SymPy symbolic library, multiplication of array objects as either a*b or a@b will produce the matrix product. The Hadamard product can be obtained with the method call a.multiply_elementwise(b). [22] Some Python packages include support for Hadamard powers using methods like np.power(a, b), or the Pandas method a.pow(b).