Search results
Results From The WOW.Com Content Network
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.
George Gamow's make-believe experimental apparatus for validating the thought experiment at the Niels Bohr Institute in Copenhagen. The idea is particularly acute and the argument seemed unassailable. It's important to consider the impact of all of these exchanges on the people involved at the time.
Bohr considered one of the foundational truths of quantum mechanics to be the fact that setting up an experiment to measure one quantity of a pair, for instance the position of an electron, excludes the possibility of measuring the other, yet understanding both experiments is necessary to characterize the object under study. In Bohr's view, the ...
Bohr, meanwhile, defended the idea that quantum systems can only have their own reality defined after the scientist has set up the experimental design. “God does not play dice,” Einstein said.
The Bohr model of the hydrogen atom (Z = 1) or a hydrogen-like ion (Z > 1), where the negatively charged electron confined to an atomic shell encircles a small, positively charged atomic nucleus and where an electron jumps between orbits, is accompanied by an emitted or absorbed amount of electromagnetic energy (hν). [1]
According to Bohr's complementarity principle, light is neither a wave nor a stream of particles. A particular experiment can demonstrate particle behavior (passing through a definite slit) or wave behavior (interference), but not both at the same time. [72] The same experiment has been performed for light, electrons, atoms, and molecules.
The Bell test has its origins in the debate between Einstein and other pioneers of quantum physics, principally Niels Bohr. One feature of the theory of quantum mechanics under debate was the meaning of Heisenberg's uncertainty principle. This principle states that if some information is known about a given particle, there is some other ...
The Copenhagen interpretation is a collection of views about the meaning of quantum mechanics, stemming from the work of Niels Bohr, Werner Heisenberg, Max Born, and others. The term "Copenhagen interpretation" was apparently coined by Heisenberg during the 1950s to refer to ideas developed in the 1925–1927 period, glossing over his ...