Ads
related to: group theory in geometry practice pdf with answers printable
Search results
Results From The WOW.Com Content Network
Geometric group theory grew out of combinatorial group theory that largely studied properties of discrete groups via analyzing group presentations, which describe groups as quotients of free groups; this field was first systematically studied by Walther von Dyck, student of Felix Klein, in the early 1880s, [2] while an early form is found in the 1856 icosian calculus of William Rowan Hamilton ...
In mathematics and abstract algebra, group theory studies the algebraic structures known as groups.The concept of a group is central to abstract algebra: other well-known algebraic structures, such as rings, fields, and vector spaces, can all be seen as groups endowed with additional operations and axioms.
Group theory has three main historical sources: number theory, the theory of algebraic equations, and geometry.The number-theoretic strand was begun by Leonhard Euler, and developed by Gauss's work on modular arithmetic and additive and multiplicative groups related to quadratic fields.
In mathematics, geometric group theory is the study of groups by geometric methods. See also Category:Combinatorial group theory . The main article for this category is Geometric group theory .
An earlier result of Joseph A. Wolf [2] showed that if G is a finitely generated nilpotent group, then the group has polynomial growth. Yves Guivarc'h [3] and independently Hyman Bass [4] (with different proofs) computed the exact order of polynomial growth. Let G be a finitely generated nilpotent group with lower central series
Since the group of affine geometry is a subgroup of the group of projective geometry, any notion invariant in projective geometry is a priori meaningful in affine geometry; but not the other way round. If you remove required symmetries, you have a more powerful theory but fewer concepts and theorems (which will be deeper and more general).
In geometric group theory, a graph of groups is an object consisting of a collection of groups indexed by the vertices and edges of a graph, together with a family of monomorphisms of the edge groups into the vertex groups. There is a unique group, called the fundamental group, canonically associated to each finite connected graph of
In geometric group theory, a geometry is any proper, geodesic metric space. An action of a finitely-generated group G on a geometry X is geometric if it satisfies the following conditions: Each element of G acts as an isometry of X. The action is cocompact, i.e. the quotient space X/G is a compact space.