Search results
Results From The WOW.Com Content Network
II:106 Although Bohr's model would also rely on just the electron to explain the spectrum, he did not assume an electrodynamical model for the atom. The other important advance in the understanding of atomic spectra was the Rydberg–Ritz combination principle which related atomic spectral line frequencies to differences between 'terms ...
The theory would have correctly explained the Zeeman effect, except for the issue of electron spin. Sommerfeld's model was much closer to the modern quantum mechanical picture than Bohr's. In the 1950s Joseph Keller updated Bohr–Sommerfeld quantization using Einstein's interpretation of 1917, [6] now known as Einstein–Brillouin–Keller method.
Niels Henrik David Bohr (7 October 1885 – 18 November 1962) was a Danish theoretical physicist who made foundational contributions to understanding atomic structure and quantum theory, for which he received the Nobel Prize in Physics in 1922.
Niels Bohr's 1913 quantum model of the hydrogen atom. In 1913 Niels Bohr proposed a new model of the atom that included quantized electron orbits: electrons still orbit the nucleus much as planets orbit around the Sun, but they are permitted to inhabit only certain orbits, not to orbit at any arbitrary distance. [18]
In physics, complementarity is a conceptual aspect of quantum mechanics that Niels Bohr regarded as an essential feature of the theory. [1] [2] The complementarity principle holds that certain pairs of complementary properties cannot all be observed or measured simultaneously.
Bohr–Mollerup theorem (gamma function) Bohr–van Leeuwen theorem ; Bolyai–Gerwien theorem (discrete geometry) Bolzano's theorem (real analysis, calculus) Bolzano–Weierstrass theorem (real analysis, calculus) Bombieri's theorem (number theory) Bombieri–Friedlander–Iwaniec theorem (number theory) Bondareva–Shapley theorem
Get AOL Mail for FREE! Manage your email like never before with travel, photo & document views. Personalize your inbox with themes & tabs. You've Got Mail!
The Bohr radius ( ) is a physical constant, approximately equal to the most probable distance between the nucleus and the electron in a hydrogen atom in its ground state. It is named after Niels Bohr, due to its role in the Bohr model of an atom. Its value is 5.291 772 105 44 (82) × 10 −11 m. [1] [2]