Search results
Results From The WOW.Com Content Network
The following table lists many common symbols, together with their name, how they should be read out loud, and the related field of mathematics. Additionally, the subsequent columns contains an informal explanation, a short example, the Unicode location, the name for use in HTML documents, [ 1 ] and the LaTeX symbol.
The biconditional is true in two cases, where either both statements are true or both are false. The connective is biconditional (a statement of material equivalence), [2] and can be likened to the standard material conditional ("only if", equal to "if ... then") combined with its reverse ("if"); hence the name. The result is that the truth of ...
For example, even though material conditionals with false antecedents are vacuously true, the natural language statement "If 8 is odd, then 3 is prime" is typically judged false. Similarly, any material conditional with a true consequent is itself true, but speakers typically reject sentences such as "If I have a penny in my pocket, then Paris ...
If a statement's negation is false, then the statement is true (and vice versa). If a statement (or its contrapositive) and the inverse (or the converse) are both true or both false, then it is known as a logical biconditional .
Then we have by the law of excluded middle [clarification needed] (i.e. either must be true, or must not be true). Subsequently, since P → Q {\displaystyle P\to Q} , P {\displaystyle P} can be replaced by Q {\displaystyle Q} in the statement, and thus it follows that ¬ P ∨ Q {\displaystyle \neg P\lor Q} (i.e. either Q {\displaystyle Q ...
In logic and mathematics, necessity and sufficiency are terms used to describe a conditional or implicational relationship between two statements.For example, in the conditional statement: "If P then Q", Q is necessary for P, because the truth of Q is guaranteed by the truth of P.
An antecedent is the first half of a hypothetical proposition, whenever the if-clause precedes the then-clause. In some contexts the antecedent is called the protasis. [1] Examples: If , then . This is a nonlogical formulation of a hypothetical proposition. In this case, the antecedent is P, and the consequent is Q.
Causal conditional, if X then Y, where X is a cause of Y; Conditional probability, the probability of an event A given that another event B; Conditional proof, in logic: a proof that asserts a conditional, and proves that the antecedent leads to the consequent; Material conditional, in propositional calculus, or logical calculus in mathematics