When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Right triangle - Wikipedia

    en.wikipedia.org/wiki/Right_triangle

    A right triangle ABC with its right angle at C, hypotenuse c, and legs a and b,. A right triangle or right-angled triangle, sometimes called an orthogonal triangle or rectangular triangle, is a triangle in which two sides are perpendicular, forming a right angle (1 ⁄ 4 turn or 90 degrees).

  3. Pythagorean theorem - Wikipedia

    en.wikipedia.org/wiki/Pythagorean_theorem

    In mathematics, the Pythagorean theorem or Pythagoras' theorem is a fundamental relation in Euclidean geometry between the three sides of a right triangle.It states that the area of the square whose side is the hypotenuse (the side opposite the right angle) is equal to the sum of the areas of the squares on the other two sides.

  4. Trigonometric functions - Wikipedia

    en.wikipedia.org/wiki/Trigonometric_functions

    Basis of trigonometry: if two right triangles have equal acute angles, they are similar, so their corresponding side lengths are proportional.. In mathematics, the trigonometric functions (also called circular functions, angle functions or goniometric functions) [1] are real functions which relate an angle of a right-angled triangle to ratios of two side lengths.

  5. Special right triangle - Wikipedia

    en.wikipedia.org/wiki/Special_right_triangle

    The Kepler triangle is a right triangle whose sides are in geometric progression. If the sides are formed from the geometric progression a, ar, ar 2 then its common ratio r is given by r = √ φ where φ is the golden ratio. Its sides are therefore in the ratio 1 : √ φ : φ. Thus, the shape of the Kepler triangle is uniquely determined (up ...

  6. Kepler triangle - Wikipedia

    en.wikipedia.org/wiki/Kepler_triangle

    The fact that the triangle with these proportions is a right triangle follows from the fact that, for squared edge lengths with these proportions, the defining polynomial of the golden ratio is the same as the formula given by the Pythagorean theorem for the squared edge lengths of a right triangle: = +

  7. Proportion (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Proportion_(mathematics)

    Fundamental rule of proportion. This rule is sometimes called Means‐Extremes Property. [4] If the ratios are expressed as fractions, then the same rule can be phrased in terms of the equality of "cross-products" [2] and is called Cross‐Products Property. [4] If =, then =

  8. Proportionality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Proportionality_(mathematics)

    Two variables are inversely proportional (also called varying inversely, in inverse variation, in inverse proportion) [2] if each of the variables is directly proportional to the multiplicative inverse (reciprocal) of the other, or equivalently if their product is a constant. [3]

  9. Triangle - Wikipedia

    en.wikipedia.org/wiki/Triangle

    The area formula for a triangle can be proven by cutting two copies of the triangle into pieces and rearranging them into a rectangle. In the Euclidean plane, area is defined by comparison with a square of side length ⁠ ⁠, which has area 1. There are several ways to calculate the area of an arbitrary triangle.