Search results
Results From The WOW.Com Content Network
A DNA replication terminus (Ter) has a role in preventing progress of the DNA replication fork. [3] Therefore, a DNA replication terminus site-binding protein binds to this site helping to block the DNA replication fork. There are two genes controlling Ter-binding activity, named tau and Tus. [1]
The DNA strands are shown in pink and green.) Tus, also known as terminus utilization substance, is a protein that binds to terminator sequences and acts as a counter-helicase when it comes in contact with an advancing helicase. [2] The bound Tus protein effectively halts DNA polymerase movement. [2] Tus helps end DNA replication in prokaryotes ...
Replication Factories Disentangle Sister Chromatids. The disentanglement is essential for distributing the chromatids into daughter cells after DNA replication. Because sister chromatids after DNA replication hold each other by Cohesin rings, there is the only chance for the disentanglement in DNA replication. Fixing of replication machineries ...
The 5′-end (pronounced "five prime end") designates the end of the DNA or RNA strand that has the fifth carbon in the sugar-ring of the deoxyribose or ribose at its terminus. A phosphate group attached to the 5′-end permits ligation of two nucleotides , i.e., the covalent binding of a 5′-phosphate to the 3′-hydroxyl group of another ...
Termination is the process of fusion of replication forks and disassembly of the replisomes to yield two separate and complete DNA molecules. It occurs in the terminus region, approximately opposite oriC on the chromosome (Fig 5). The terminus region contains several DNA replication terminator sites, or "Ter" sites.
Eukaryotic DNA replication is a conserved mechanism ... While the leading strand can use a single RNA primer to extend the 5' terminus of the replicating DNA strand ...
GC or AT skew changes sign at the boundaries of the two replichores, which correspond to DNA replication origin or terminus. [2] [4] [5] Originally, this asymmetric nucleotide composition was explained as a different mechanism used in DNA replication between the leading strand and lagging strand.
The temporal order of replication of all the segments in the genome, called its replication-timing program, can now be easily measured in two different ways. [1] One way simply measures the amount of the different DNA sequences along the length of the chromosome per cell.