Search results
Results From The WOW.Com Content Network
A conic is the curve obtained as the intersection of a plane, called the cutting plane, with the surface of a double cone (a cone with two nappes).It is usually assumed that the cone is a right circular cone for the purpose of easy description, but this is not required; any double cone with some circular cross-section will suffice.
Section Sub-Section Sup-Section Name Algebraic Curves ¿ Curves ¿ Curves: Cubic Plane Curve: Quartic Plane Curve: Rational Curves: Degree 2: Conic Section(s) Unit Circle: Unit Hyperbola: Degree 3: Folium of Descartes: Cissoid of Diocles: Conchoid of de Sluze: Right Strophoid: Semicubical Parabola: Serpentine Curve: Trident Curve: Trisectrix of ...
This page was last edited on 14 November 2020, at 20:25 (UTC).; Text is available under the Creative Commons Attribution-ShareAlike 4.0 License; additional terms may apply.
In geometry, a conical surface is a three-dimensional surface formed from the union of lines ... is an ellipse, or any conic section, and the apex is an arbitrary ...
If the conic is non-degenerate, the conjugates of a point always form a line and the polarity defined by the conic is a bijection between the points and lines of the extended plane containing the conic (that is, the plane together with the points and line at infinity). If the point p lies on the conic Q, the polar line of p is the tangent line ...
In Euclidean geometry, a circumconic is a conic section that passes through the three vertices of a triangle, [1] and an inconic is a conic section inscribed in the sides, possibly extended, of a triangle. [2] Suppose A, B, C are distinct non-collinear points, and let ABC denote the triangle whose vertices are A, B, C.
In common usage in elementary geometry, cones are assumed to be right circular, where circular means that the base is a circle and right means that the axis passes through the centre of the base at right angles to its plane. [1] If the cone is right circular the intersection of a plane with the lateral surface is a conic section.
In geometry, the conic constant (or Schwarzschild constant, [1] after Karl Schwarzschild) is a quantity describing conic sections, and is represented by the letter K. The constant is given by K = − e 2 , {\displaystyle K=-e^{2},} where e is the eccentricity of the conic section.