Search results
Results From The WOW.Com Content Network
Model selection is the task of selecting a model from among various candidates on the basis of performance criterion to choose the best one. [1] In the context of machine learning and more generally statistical analysis , this may be the selection of a statistical model from a set of candidate models, given data.
Van der Pas and Grünwald prove that model selection based on a modified Bayesian estimator, the so-called switch distribution, in many cases behaves asymptotically like HQC, while retaining the advantages of Bayesian methods such as the use of priors etc.
The clearest case is where precision is taken to be mean squared error, say = + in terms of squared bias and variance for the estimator associated with model . FIC formulae are then available in a variety of situations, both for handling parametric , semiparametric and nonparametric situations, involving separate estimation of squared bias and ...
In efficient quantile regression, an EL-based categorization [9] procedure helps determine the shape of the true discrete distribution at level p, and also provides a way of formulating a consistent estimator. In addition, EL can be used in place of parametric likelihood to form model selection criteria. [10]
A statistical model is a mathematical model that embodies a set of statistical assumptions concerning the generation of sample data (and similar data from a larger population). A statistical model represents, often in considerably idealized form, the data-generating process . [ 1 ]
When the statistical model has several parameters, however, the mean of the parameter-estimator is a vector and its variance is a matrix. The inverse matrix of the variance-matrix is called the "information matrix". Because the variance of the estimator of a parameter vector is a matrix, the problem of "minimizing the variance" is complicated.
Minimum Description Length (MDL) is a model selection principle where the shortest description of the data is the best model. MDL methods learn through a data compression perspective and are sometimes described as mathematical applications of Occam's razor. The MDL principle can be extended to other forms of inductive inference and learning ...
A basic tool for econometrics is the multiple linear regression model. [8] Econometric theory uses statistical theory and mathematical statistics to evaluate and develop econometric methods. [ 9 ] [ 10 ] Econometricians try to find estimators that have desirable statistical properties including unbiasedness , efficiency , and consistency .