Search results
Results From The WOW.Com Content Network
The complete homogeneous symmetric polynomials are characterized by the following identity of formal power series in t: = (, …,) = = = = = (this is called the generating function, or generating series, for the complete homogeneous symmetric polynomials).
In the case of the zero polynomial, every number is a zero of the corresponding function, and the concept of root is rarely considered. A number a is a root of a polynomial P if and only if the linear polynomial x − a divides P, that is if there is another polynomial Q such that P = (x − a) Q.
The distinction between a polynomial expression and the polynomial that it represents is relatively recent, and mainly motivated by the rise of computer algebra, where, for example, the test whether two polynomial expressions represent the same polynomial may be a nontrivial computation.
The total number of monomials appearing in a complete Bell polynomial B n is thus equal to the total number of integer partitions of n. Also the degree of each monomial, which is the sum of the exponents of each variable in the monomial, is equal to the number of blocks the set is divided into.
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections ...
The Taylor series can be used to calculate the value of an entire function at every point, if the value of the function, and of all of its derivatives, are known at a single point. Uses of the Taylor series for analytic functions include: The partial sums (the Taylor polynomials) of the series can be used as approximations of the function ...
A formal power series can be loosely thought of as an object that is like a polynomial, but with infinitely many terms.Alternatively, for those familiar with power series (or Taylor series), one may think of a formal power series as a power series in which we ignore questions of convergence by not assuming that the variable X denotes any numerical value (not even an unknown value).
The falling factorial occurs in a formula which represents polynomials using the forward difference operator = (+) , which in form is an exact analogue to Taylor's theorem: Compare the series expansion from umbral calculus