Search results
Results From The WOW.Com Content Network
In the case of the zero polynomial, every number is a zero of the corresponding function, and the concept of root is rarely considered. A number a is a root of a polynomial P if and only if the linear polynomial x − a divides P, that is if there is another polynomial Q such that P = (x − a) Q.
Multiplying this by the generating function for the complete homogeneous symmetric polynomials, one obtains the constant series 1 (equivalently, plethystic exponentials satisfy the usual properties of an exponential), and the relation between the elementary and complete homogeneous polynomials follows from comparing coefficients of t m.
The distinction between a polynomial expression and the polynomial that it represents is relatively recent, and mainly motivated by the rise of computer algebra, where, for example, the test whether two polynomial expressions represent the same polynomial may be a nontrivial computation.
In mathematics, Legendre polynomials, named after Adrien-Marie Legendre (1782), are a system of complete and orthogonal polynomials with a wide number of mathematical properties and numerous applications. They can be defined in many ways, and the various definitions highlight different aspects as well as suggest generalizations and connections ...
A natural example of such a question concerning positive-dimensional systems is the following: decide if a polynomial system over the rational numbers has a finite number of real solutions and compute them. A generalization of this question is find at least one solution in each connected component of the set of real solutions of a polynomial system
Integer-valued polynomials may be used effectively to solve questions about fixed divisors of polynomials. For example, the polynomials P with integer coefficients that always take on even number values are just those such that / is integer valued. Those in turn are the polynomials that may be expressed as a linear combination with even integer ...
Sylvester's law of inertia states that the numbers of each 0, 1, and −1 are invariants of the quadratic form, in the sense that any other diagonalization will contain the same number of each. The signature of the quadratic form is the triple ( n 0 , n + , n − ) , where these components count the number of 0s, number of 1s, and the number of ...
The total number of monomials appearing in a complete Bell polynomial B n is thus equal to the total number of integer partitions of n. Also the degree of each monomial, which is the sum of the exponents of each variable in the monomial, is equal to the number of blocks the set is divided into.