Search results
Results From The WOW.Com Content Network
The composition of Jupiter's atmosphere is similar to that of the planet as a whole. [1] Jupiter's atmosphere is the most comprehensively understood of those of all the giant planets because it was observed directly by the Galileo atmospheric probe when it entered the Jovian atmosphere on December 7, 1995. [28]
Jupiter's atmosphere consists of 76% hydrogen and 24% helium by mass, with a denser interior. It contains trace elements and compounds like carbon, oxygen, sulfur, neon, ammonia, water vapour, phosphine, hydrogen sulfide, and hydrocarbons. Jupiter's helium abundance is 80% of the Sun's, similar to Saturn's composition. The ongoing contraction ...
The Great Red Spot is a persistent high-pressure region in the atmosphere of Jupiter, producing an anticyclonic storm that is the largest in the Solar System. It is the most recognizable feature on Jupiter, owing to its red-orange color whose origin is still unknown.
Around Dec. 14, Jupiter will be visible in the night sky between the nearly full moon and a reddish-orange star called Aldebaran, which shines brightest in the Taurus constellation and can be seen ...
This photo, and many other images that have been released from Juno's extended mission, employs color enhancement to help visualize the depth between the layers of clouds in Jupiter's deep atmosphere.
Storms on Jupiter form ammonia-rich hail — called mushballs — in the atmosphere of the giant planet, new research reveals. Investigators believe these tempests play an important role in ...
Atmospheric super-rotation is a phenomenon where a planet's atmosphere rotates faster than the planet itself. This behavior is observed in the atmospheres of Venus, Titan, Jupiter, and Saturn. Venus exhibits the most extreme super-rotation, with its atmosphere circling the planet in four Earth days, much faster than the planet's own rotation of ...
Before the impact, models of Jupiter's atmosphere had indicated that the break-up of the largest fragments would occur at atmospheric pressures of anywhere from 30 kilopascals to a few tens of megapascals (from 0.3 to a few hundred bar), [30] with some predictions that the comet would penetrate a layer of water and create a bluish shroud over ...