When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Thermal conductance and resistance - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductance_and...

    A 2008 review paper written by Philips researcher Clemens J. M. Lasance notes that: "Although there is an analogy between heat flow by conduction (Fourier's law) and the flow of an electric current (Ohm’s law), the corresponding physical properties of thermal conductivity and electrical conductivity conspire to make the behavior of heat flow ...

  3. Thermal conduction - Wikipedia

    en.wikipedia.org/wiki/Thermal_conduction

    Thermal conduction is the diffusion of thermal energy (heat) within one material or between materials in contact. The higher temperature object has molecules with more kinetic energy; collisions between molecules distributes this kinetic energy until an object has the same kinetic energy throughout.

  4. Thermal conductivity and resistivity - Wikipedia

    en.wikipedia.org/wiki/Thermal_conductivity_and...

    The thermal conductivity of a material is a measure of its ability to conduct heat.It is commonly denoted by , , or and is measured in W·m −1 ·K −1.. Heat transfer occurs at a lower rate in materials of low thermal conductivity than in materials of high thermal conductivity.

  5. Heat transfer physics - Wikipedia

    en.wikipedia.org/wiki/Heat_transfer_physics

    Conduction heat flux q k for ideal gas is derived with the gas kinetic theory or the Boltzmann transport equations, and the thermal conductivity is =, -, where u f 2 1/2 is the RMS (root mean square) thermal velocity (3k B T/m from the MB distribution function, m: atomic mass) and τ f-f is the relaxation time (or intercollision time period ...

  6. List of thermal conductivities - Wikipedia

    en.wikipedia.org/wiki/List_of_thermal_conductivities

    Small granite pillars have failed under loads that averaged out to about 1.43 ⋅ 10 8 Newtons/meter 2 and this kind of rock has a sonic speed of about 5.6 ± 0.3 ⋅ 10 3 m/sec (stp), a density of about 2.7 g/cm 3 and specific heat ranging from about 0.2 to 0.3 cal/g °C through the temperature interval 100-1000 °C [Stowe pages 41 & 59 and ...

  7. Drude model - Wikipedia

    en.wikipedia.org/wiki/Drude_model

    The Drude model of electrical conduction was proposed in 1900 [1] [2] by Paul Drude to explain the transport properties of electrons in materials (especially metals). Basically, Ohm's law was well established and stated that the current J and voltage V driving the current are related to the resistance R of the material. The inverse of the ...

  8. Variable-range hopping - Wikipedia

    en.wikipedia.org/wiki/Variable-range_hopping

    The Efros–Shklovskii (ES) variable-range hopping is a conduction model which accounts for the Coulomb gap, a small jump in the density of states near the Fermi level due to interactions between localized electrons. [5] It was named after Alexei L. Efros and Boris Shklovskii who proposed it in 1975. [5]

  9. Moving heat source model for thin plates - Wikipedia

    en.wikipedia.org/wiki/Moving_heat_source_model...

    In the 1930s metallurgists Albert Portevin and D. Seferian attempted to experimentally determine heat transfer characteristics in welding. [1] They correlated the effects of several factors—material properties, welding process, and part dimensions—on temperature distribution, by performing oxyacetylene (gas) and covered electrode (arc) welds on plates and bars of various profiles, and ...