Search results
Results From The WOW.Com Content Network
Negative numbers are usually written with a minus sign in front. For example, −3 represents a negative quantity with a magnitude of three, and is pronounced "minus three" or "negative three". Conversely, a number that is greater than zero is called positive; zero is usually (but not always) thought of as neither positive nor negative. [2]
Therefore, the difference of 5 and 2 is 3; that is, 5 − 2 = 3. While primarily associated with natural numbers in arithmetic , subtraction can also represent removing or decreasing physical and abstract quantities using different kinds of objects including negative numbers , fractions , irrational numbers , vectors , decimals, functions, and ...
Negative numbers: Real numbers that are less than zero. Because zero itself has no sign, neither the positive numbers nor the negative numbers include zero. When zero is a possibility, the following terms are often used: Non-negative numbers: Real numbers that are greater than or equal to zero. Thus a non-negative number is either zero or positive.
The same convention is also used in some computer languages. For example, subtracting −5 from 3 might be read as "positive three take away negative 5", and be shown as 3 − − 5 becomes 3 + 5 = 8, which can be read as: + 3 −1(− 5) or even as + 3 − − 5 becomes + 3 + + 5 = + 8.
The plus and minus symbols are used to show the sign of a number. In mathematics, the sign of a real number is its property of being either positive, negative, or 0.Depending on local conventions, zero may be considered as having its own unique sign, having no sign, or having both positive and negative sign.
The name of a negative number is the name of the corresponding positive number preceded by "minus" or (American English) "negative". Thus −5.2 is "minus five point two" or "negative five point two".
A negative base (or negative radix) may be used to construct a non-standard positional numeral system.Like other place-value systems, each position holds multiples of the appropriate power of the system's base; but that base is negative—that is to say, the base b is equal to −r for some natural number r (r ≥ 2).
In elementary mathematics, the additive inverse is often referred to as the opposite number, [3] [4] or its negative. [5] The unary operation of arithmetic negation [6] is closely related to subtraction [7] and is important in solving algebraic equations. [8] Not all sets where addition is defined have an additive inverse, such as the natural ...