Ads
related to: real hard algebra problems
Search results
Results From The WOW.Com Content Network
Many mathematical problems have been stated but not yet solved. These problems come from many areas of mathematics, such as theoretical physics, computer science, algebra, analysis, combinatorics, algebraic, differential, discrete and Euclidean geometries, graph theory, group theory, model theory, number theory, set theory, Ramsey theory, dynamical systems, and partial differential equations.
Goldbach’s Conjecture. One of the greatest unsolved mysteries in math is also very easy to write. Goldbach’s Conjecture is, “Every even number (greater than two) is the sum of two primes ...
Euler diagram for P, NP, NP-complete, and NP-hard set of problems (excluding the empty language and its complement, which belong to P but are not NP-complete) Main article: P versus NP problem The question is whether or not, for all problems for which an algorithm can verify a given solution quickly (that is, in polynomial time ), an algorithm ...
Cobweb plot of the orbit 10 → 5 → 8 → 4 → 2 → 1 → ... in an extension of the Collatz map to the real line. The Collatz map can be extended to the real line by choosing any function which evaluates to x / 2 {\displaystyle x/2} when x {\displaystyle x} is an even integer, and to either 3 x + 1 {\displaystyle 3x+1} or ( 3 x + 1 ) / 2 ...
Math is not everyone’s favorite, understandably. Hours of math homework and difficult equations can make anyone sour on the subject. But when math problems are outside of a school setting, there ...
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
Hilbert's problems are 23 problems in mathematics published by German mathematician David Hilbert in 1900. They were all unsolved at the time, and several proved to be very influential for 20th-century mathematics.
Smale's problems is a list of eighteen unsolved problems in mathematics proposed by Steve Smale in 1998 [1] and republished in 1999. [2] Smale composed this list in reply to a request from Vladimir Arnold, then vice-president of the International Mathematical Union, who asked several mathematicians to propose a list of problems for the 21st century.