When.com Web Search

  1. Ads

    related to: how to find isosceles angles given a triangle area and side properties of two

Search results

  1. Results From The WOW.Com Content Network
  2. Solution of triangles - Wikipedia

    en.wikipedia.org/wiki/Solution_of_triangles

    A side and the two angles adjacent to it (ASA) A side, the angle opposite to it and an angle adjacent to it (AAS). For all cases in the plane, at least one of the side lengths must be specified. If only the angles are given, the side lengths cannot be determined, because any similar triangle is a solution.

  3. Isosceles triangle - Wikipedia

    en.wikipedia.org/wiki/Isosceles_triangle

    In geometry, an isosceles triangle (/ aɪ ˈ s ɒ s ə l iː z /) is a triangle that has two sides of equal length. Sometimes it is specified as having exactly two sides of equal length, and sometimes as having at least two sides of equal length, the latter version thus including the equilateral triangle as a special case.

  4. Spherical trigonometry - Wikipedia

    en.wikipedia.org/wiki/Spherical_trigonometry

    (The given elements are also listed below the triangle). In the summary notation here such as ASA, A refers to a given angle and S refers to a given side, and the sequence of A's and S's in the notation refers to the corresponding sequence in the triangle. Case 1: three sides given (SSS). The cosine rule may be used to give the angles A, B, and ...

  5. Law of cosines - Wikipedia

    en.wikipedia.org/wiki/Law_of_cosines

    the third side of a triangle if two sides and an angle opposite to one of them is known (this side can also be found by two applications of the law of sines): [a] = ⁡ ⁡. These formulas produce high round-off errors in floating point calculations if the triangle is very acute, i.e., if c is small relative to a and b or γ is small compared to 1.

  6. Pons asinorum - Wikipedia

    en.wikipedia.org/wiki/Pons_asinorum

    The pons asinorum in Oliver Byrne's edition of the Elements [1]. In geometry, the theorem that the angles opposite the equal sides of an isosceles triangle are themselves equal is known as the pons asinorum (/ ˈ p ɒ n z ˌ æ s ɪ ˈ n ɔːr ə m / PONZ ass-ih-NOR-əm), Latin for "bridge of asses", or more descriptively as the isosceles triangle theorem.

  7. List of trigonometric identities - Wikipedia

    en.wikipedia.org/wiki/List_of_trigonometric...

    This allows the two congruent purple-outline triangles and to be constructed, each with hypotenuse ⁡ and angle at their base. The sum of the heights of the red and blue triangles is sin ⁡ θ + sin ⁡ φ {\displaystyle \sin \theta +\sin \varphi } , and this is equal to twice the height of one purple triangle, i.e. 2 sin ⁡ p cos ⁡ q ...