Search results
Results From The WOW.Com Content Network
In engineering, beams are of several types: [2] Simply supported – a beam supported on the ends which are free to rotate and have no moment resistance. Fixed or encastré (encastrated) – a beam supported on both ends and restrained from rotation. Overhanging – a simple beam extending beyond its support on one end.
Beam bridges are the simplest structural forms for bridge spans supported by an abutment or pier at each end. [1] No moments are transferred throughout the support, hence their structural type is known as simply supported. The simplest beam bridge could be a log (see log bridge), a wood plank, or a stone slab (see clapper bridge) laid
Simply supported beam with a single eccentric concentrated load. An illustration of the Macaulay method considers a simply supported beam with a single eccentric concentrated load as shown in the adjacent figure. The first step is to find . The reactions at the supports A and C are determined from the balance of forces and moments as
Beams and columns are called line elements and are often represented by simple lines in structural modeling. cantilevered (supported at one end only with a fixed connection) simply supported (fixed against vertical translation at each end and horizontal translation at one end only, and able to rotate at the supports)
Other beams can have both ends fixed (known as encastre beam); therefore each end support has both bending moments and shear reaction loads. Beams can also have one end fixed and one end simply supported. The simplest type of beam is the cantilever, which is fixed at one end and is free at the other end (neither simple nor fixed). In reality ...
The deflection at any point, , along the span of a center loaded simply supported beam can be calculated using: [1] = for The special case of elastic deflection at the midpoint C of a beam, loaded at its center, supported by two simple supports is then given by: [ 1 ] δ C = F L 3 48 E I {\displaystyle \delta _{C}={\frac {FL^{3}}{48EI}}} where
Simply supported beams: The displacement is zero at the locations of the two supports. The bending moment M x x {\displaystyle M_{xx}} applied to the beam also has to be specified. The rotation φ {\displaystyle \varphi } and the transverse shear force Q x {\displaystyle Q_{x}} are not specified.
Loads imposed on structures are supported by means of forces transmitted through structural elements. These forces can manifest themselves as tension (axial force), compression (axial force), shear , and bending , or flexure (a bending moment is a force multiplied by a distance, or lever arm, hence producing a turning effect or torque ).