When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euler–Bernoulli beam theory - Wikipedia

    en.wikipedia.org/wiki/EulerBernoulli_beam_theory

    Euler–Bernoulli beam theory (also known as engineer's beam theory or classical beam theory) [1] is a simplification of the linear theory of elasticity which provides a means of calculating the load-carrying and deflection characteristics of beams.

  3. Macaulay's method - Wikipedia

    en.wikipedia.org/wiki/Macaulay's_method

    The starting point is the relation from Euler-Bernoulli beam theory = Where is the deflection and is the bending moment. This equation [7] is simpler than the fourth-order beam equation and can be integrated twice to find if the value of as a function of is known.

  4. Structural engineering theory - Wikipedia

    en.wikipedia.org/wiki/Structural_engineering_theory

    The Euler–Bernoulli beam equation defines the behaviour of a beam element (see below). It is based on five assumptions: Continuum mechanics is valid for a bending beam. The stress at a cross section varies linearly in the direction of bending, and is zero at the centroid of every cross section.

  5. Deflection (engineering) - Wikipedia

    en.wikipedia.org/wiki/Deflection_(engineering)

    The deflection of beam elements is usually calculated on the basis of the Euler–Bernoulli beam equation while that of a plate or shell element is calculated using plate or shell theory. An example of the use of deflection in this context is in building construction. Architects and engineers select materials for various applications.

  6. Solid mechanics - Wikipedia

    en.wikipedia.org/wiki/Solid_mechanics

    1750: Euler–Bernoulli beam equation; 1700–1782: Daniel Bernoulli introduced the principle of virtual work; 1707–1783: Leonhard Euler developed the theory of buckling of columns; Leonhard Euler developed the theory of buckling of columns. 1826: Claude-Louis Navier published a treatise on the elastic behaviors of structures

  7. Euler's critical load - Wikipedia

    en.wikipedia.org/wiki/Euler's_critical_load

    Fig. 2: Column effective length factors for Euler's critical load. In practical design, it is recommended to increase the factors as shown above. The following assumptions are made while deriving Euler's formula: [3] The material of the column is homogeneous and isotropic. The compressive load on the column is axial only.

  8. Self-buckling - Wikipedia

    en.wikipedia.org/wiki/Self-buckling

    where the right-hand side of the equation is the moment of the weight of BP about P. According to Euler–Bernoulli beam theory: = Where is the Young's modulus of elasticity of the substance, is the second moment of area.

  9. Generalised beam theory - Wikipedia

    en.wikipedia.org/wiki/Generalised_beam_theory

    In structural engineering and mechanical engineering, generalised beam theory (GBT) is a one-dimensional theory used to mathematically model how beams bend and twist under various loads. It is a generalization of classical Euler–Bernoulli beam theory that approximates a beam as an assembly of thin-walled plates that are constrained to deform ...