When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Homogeneous function - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_function

    In mathematics, a homogeneous function is a function of several variables such that the following holds: If each of the function's arguments is multiplied by the same scalar, then the function's value is multiplied by some power of this scalar; the power is called the degree of homogeneity, or simply the degree.

  3. Asymptotic homogenization - Wikipedia

    en.wikipedia.org/wiki/Asymptotic_homogenization

    Of course, all matter is inhomogeneous at some scale, but frequently it is convenient to treat it as homogeneous. A good example is the continuum concept which is used in continuum mechanics . Under this assumption, materials such as fluids , solids , etc. can be treated as homogeneous materials and associated with these materials are material ...

  4. Homogeneity and heterogeneity - Wikipedia

    en.wikipedia.org/wiki/Homogeneity_and_heterogeneity

    Homogeneity and heterogeneity; only ' b ' is homogeneous Homogeneity and heterogeneity are concepts relating to the uniformity of a substance, process or image.A homogeneous feature is uniform in composition or character (i.e., color, shape, size, weight, height, distribution, texture, language, income, disease, temperature, radioactivity, architectural design, etc.); one that is heterogeneous ...

  5. Homogeneous differential equation - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_differential...

    A linear differential equation is homogeneous if it is a homogeneous linear equation in the unknown function and its derivatives. It follows that, if φ(x) is a solution, so is cφ(x), for any (non-zero) constant c. In order for this condition to hold, each nonzero term of the linear differential equation must depend on the unknown function or ...

  6. Homothety - Wikipedia

    en.wikipedia.org/wiki/Homothety

    In mathematics, a homothety (or homothecy, or homogeneous dilation) is a transformation of an affine space determined by a point S called its center and a nonzero number k called its ratio, which sends point X to a point X ′ by the rule, [1]

  7. Euler characteristic - Wikipedia

    en.wikipedia.org/wiki/Euler_characteristic

    In mathematics, and more specifically in algebraic topology and polyhedral combinatorics, the Euler characteristic (or Euler number, or Euler–Poincaré characteristic) is a topological invariant, a number that describes a topological space's shape or structure regardless of the way it is bent.

  8. Homogeneity (physics) - Wikipedia

    en.wikipedia.org/wiki/Homogeneity_(physics)

    However, homogeneity of materials does not necessarily mean isotropy. In the previous example, a composite material may not be isotropic. In another context, a material is not homogeneous in so far as it is composed of atoms and molecules. However, at the normal level of our everyday world, a pane of glass, or a sheet of metal is described as ...

  9. Homogeneous space - Wikipedia

    en.wikipedia.org/wiki/Homogeneous_space

    The standard torus is homogeneous under its diffeomorphism and homeomorphism groups, and the flat torus is homogeneous under its diffeomorphism, homeomorphism, and isometry groups. In mathematics, a homogeneous space is, very informally, a space that looks the same everywhere, as you move through it, with movement given by the action of a group.