Search results
Results From The WOW.Com Content Network
The silicate mantle of the Earth's moon is approximately 1300–1400 km thick, and is the source of mare basalts. [4] The lunar mantle might be exposed in the South Pole-Aitken basin or the Crisium basin. [4] The lunar mantle contains a seismic discontinuity at ~500 kilometers (310 miles) depth, most likely related to a change in composition. [4]
The temperature of the mantle increases rapidly in the thermal boundary layers at the top and bottom of the mantle, and increases gradually through the interior of the mantle. [22] Although the higher temperatures far exceed the melting points of the mantle rocks at the surface (about 1,500 K (1,200 °C; 2,200 °F) for representative peridotite ...
The upper mantle of Earth is a very thick layer of rock inside the planet, which begins just beneath the crust (at about 10 km (6.2 mi) under the oceans and about 35 km (22 mi) under the continents) and ends at the top of the lower mantle at 670 km (420 mi). Temperatures range from approximately 500 K (227 °C; 440 °F) at the upper boundary ...
The pressure at the bottom of the mantle is ≈140 GPa (1.4 Matm). [24] The mantle is composed of silicate rocks richer in iron and magnesium than the overlying crust. [25] Although solid, the mantle's extremely hot silicate material can flow over very long timescales. [26] Convection of the mantle propels the motion of the tectonic plates in the
Additionally, it contains mantle rock that interacts with seawater in a process known as “serpentinization,” which alters the rock’s structure and gives it a green, marble-like appearance.
Here, is the thickness of the oceanic mantle lithosphere, is the thermal diffusivity (approximately 1.0 × 10 −6 m 2 /s or 6.5 × 10 −4 sq ft/min) for silicate rocks, and is the age of the given part of the lithosphere. The age is often equal to L/V, where L is the distance from the spreading centre of mid-ocean ridge, and V is velocity of ...
Structure of Earth. The mesosphere is labeled as Stiffer mantle in this diagram. The lower mantle, historically also known as the mesosphere, represents approximately 56% of Earth's total volume, and is the region from 660 to 2900 km below Earth's surface; between the transition zone and the outer core. [1]
After 60 years of trying, geologists finally pried rocks from Earth's upper mantle. That's huge for so many reasons.