Search results
Results From The WOW.Com Content Network
Hubble's law can be easily depicted in a "Hubble diagram" in which the velocity (assumed approximately proportional to the redshift) of an object is plotted with respect to its distance from the observer. [30] A straight line of positive slope on this diagram is the visual depiction of Hubble's law.
Hubble's results for Andromeda were not formally published in a peer-reviewed scientific journal until 1929. [29] Hubble's classification scheme. Hubble's findings fundamentally changed the scientific view of the universe. Supporters state that Hubble's discovery of nebulae outside of our galaxy helped pave the way for future astronomers. [30]
The earliest and most direct observational evidence of the validity of the theory are the expansion of the universe according to Hubble's law (as indicated by the redshifts of galaxies), discovery and measurement of the cosmic microwave background and the relative abundances of light elements produced by Big Bang nucleosynthesis (BBN).
The Hubble constant, named for astronomer Edwin Hubble, whose work made clear the expansion of the universe, measures the rate at which expansion occurs. In accordance with the Copernican principle that the Earth is not in a central, specially favored position, one would expect that measuring this constant at any point in the universe would ...
Hubble's idea allowed for two opposing hypotheses to be suggested. One was Lemaître's Big Bang, advocated and developed by George Gamow. The other model was Fred Hoyle's Steady State theory, in which new matter would be created as the galaxies moved away from each other. In this model, the universe is roughly the same at any point in time.
This concept, initially known as the "Primeval Atom" by Lemaitre, was later elaborated into the modern Big Bang theory. If the universe had expanded at a constant rate in the past, the age of the universe now (i.e. the time since the Big Bang) is simply proportional to the inverse of the Hubble constant, often known as the Hubble time.
An important parameter in fate of the universe theory is the density parameter, omega (), defined as the average matter density of the universe divided by a critical value of that density. This selects one of three possible geometries depending on whether Ω {\displaystyle \Omega } is equal to, less than, or greater than 1 {\displaystyle 1} .
The physical universe is defined as all of space and time [a] (collectively referred to as spacetime) and their contents. [10] Such contents comprise all of energy in its various forms, including electromagnetic radiation and matter, and therefore planets, moons, stars, galaxies, and the contents of intergalactic space.