Ads
related to: kolmogorov smirnov test spss
Search results
Results From The WOW.Com Content Network
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
Lilliefors test is a normality test based on the Kolmogorov–Smirnov test.It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [1]
Statistical tests are used to test the fit between a hypothesis and the data. [1] [2] ... Kolmogorov–Smirnov test: interval: 1: Normality test: distribution ...
Kolmogorov–Smirnov test: tests whether a sample is drawn from a given distribution, or whether two samples are drawn from the same distribution. Kruskal–Wallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution.
The Kolmogorov–Smirnov test uses the supremum of the absolute difference between the empirical and the estimated distribution functions (Parr & Schucany 1980, p. 616).
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
Kolmogorov's theorem is any of several different results by Andrey Kolmogorov: In statistics. Kolmogorov–Smirnov test; In probability theory. Hahn–Kolmogorov theorem;
Together with Andrey Kolmogorov, Smirnov developed the Kolmogorov–Smirnov test and participated in the creation of the Cramér–von Mises–Smirnov criterion. Smirnov made great efforts to popularize and widely disseminate methods of mathematical statistics in the natural sciences and engineering.