Search results
Results From The WOW.Com Content Network
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
Normality test: sample size between 3 and 5000 [16] Kolmogorov–Smirnov test: interval: 1: Normality test: distribution parameters known [16] Shapiro-Francia test ...
The table shown on the right can be used in a two-sample t-test to estimate the sample sizes of an experimental group and a control group that are of equal size, that is, the total number of individuals in the trial is twice that of the number given, and the desired significance level is 0.05. [4]
The Kolmogorov–Smirnov test and the Kuiper test are more powerful when the sample size is small, particularly when Stephens's corrective factor is used. [54] These tests may be unduly conservative when applied to discrete distributions. Values for the Benford test have been generated by Morrow. [55]
The sup-norm in this expression is called the Kolmogorov–Smirnov statistic for testing the goodness-of-fit between the empirical distribution ^ and the assumed true cumulative distribution function F. Other norm functions may be reasonably used here instead of the sup-norm.
Kolmogorov–Smirnov test: tests whether a sample is drawn from a given distribution, or whether two samples are drawn from the same distribution. Kruskal–Wallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution.
3.3 Two-stage delta-corrected kolmogorov-smirnov test. ... Sample size in multiple regression: 20+ 5k. Journal of Applied Statistical Science, 17(4), 505.
Given an r-sample statistic, one can create an n-sample statistic by something similar to bootstrapping (taking the average of the statistic over all subsamples of size r). This procedure is known to have certain good properties and the result is a U-statistic. The sample mean and sample variance are of this form, for r = 1 and r = 2.