Search results
Results From The WOW.Com Content Network
Illustration of the Kolmogorov–Smirnov statistic. The red line is a model CDF, the blue line is an empirical CDF, and the black arrow is the KS statistic.. In statistics, the Kolmogorov–Smirnov test (also K–S test or KS test) is a nonparametric test of the equality of continuous (or discontinuous, see Section 2.2), one-dimensional probability distributions.
Lilliefors test is a normality test based on the Kolmogorov–Smirnov test.It is used to test the null hypothesis that data come from a normally distributed population, when the null hypothesis does not specify which normal distribution; i.e., it does not specify the expected value and variance of the distribution. [1]
In statistical hypothesis testing, a two-sample test is a test performed on the data of two random samples, each independently obtained from a different given population. The purpose of the test is to determine whether the difference between these two populations is statistically significant .
Confidence bands can be constructed around estimates of the empirical distribution function.Simple theory allows the construction of point-wise confidence intervals, but it is also possible to construct a simultaneous confidence band for the cumulative distribution function as a whole by inverting the Kolmogorov-Smirnov test, or by using non-parametric likelihood methods.
This score is a Kolmogorov–Smirnov-like statistic. [1] [2] Estimate the statistical significance of the ES. This calculation is done by a phenotypic-based permutation test in order to produce a null distribution for the ES. The P value is determined by comparison to the null distribution. [1] [2]
Kolmogorov–Smirnov test: tests whether a sample is drawn from a given distribution, or whether two samples are drawn from the same distribution. Kruskal–Wallis one-way analysis of variance by ranks: tests whether > 2 independent samples are drawn from the same distribution.
Together with Andrey Kolmogorov, Smirnov developed the Kolmogorov–Smirnov test and participated in the creation of the Cramér–von Mises–Smirnov criterion. Smirnov made great efforts to popularize and widely disseminate methods of mathematical statistics in the natural sciences and engineering.
The Kolmogorov–Smirnov test uses the supremum of the absolute difference between the empirical and the estimated distribution functions (Parr & Schucany 1980, p. 616).