Search results
Results From The WOW.Com Content Network
The dependence of work on the path of the thermodynamic process is also unrelated to reversibility, since expansion work, which can be visualized on a pressure–volume diagram as the area beneath the equilibrium curve, is different for different reversible expansion processes (e.g. adiabatic, then isothermal; vs. isothermal, then adiabatic ...
This reversibility of collisions is the first example of microreversibility. According to Boltzmann, this microreversibility implies the principle of detailed balance for collisions: at the equilibrium ensemble each collision is equilibrated by its reverse collision. [2]
A Markov process is called a reversible Markov process or reversible Markov chain if there exists a positive stationary distribution π that satisfies the detailed balance equations [13] =, where P ij is the Markov transition probability from state i to state j, i.e. P ij = P(X t = j | X t − 1 = i), and π i and π j are the equilibrium probabilities of being in states i and j, respectively ...
The theory developed by Onsager is much more general than this example and capable of treating more than two thermodynamic forces at once, with the limitation that "the principle of dynamical reversibility does not apply when (external) magnetic fields or Coriolis forces are present", in which case "the reciprocal relations break down". [1]
Fermat's principle, however, is conventionally expressed in point-to-point terms, not wavefront-to-wavefront terms. Accordingly, let us modify the example by supposing that the wavefront which becomes surface W at time t, and which becomes surface W′ at the later time t + Δt, is emitted from point A at time 0.
For example, carbonic acid: H 2 CO 3 (l) + H 2 O (l) ⇌ HCO 3 − (aq) + H 3 O + (aq). The concentrations of reactants and products in an equilibrium mixture are determined by the analytical concentrations of the reagents (A and B or C and D) and the equilibrium constant, K.
In physical and chemical kinetics, T-symmetry of the mechanical microscopic equations implies two important laws: the principle of detailed balance and the Onsager reciprocal relations. T-symmetry of the microscopic description together with its kinetic consequences are called microscopic reversibility.
Reversibility can refer to: Time reversibility , a property of some mathematical or physical processes and systems for which time-reversed dynamics are well defined Reversible diffusion , an example of a reversible stochastic process