Search results
Results From The WOW.Com Content Network
Electromigration (red arrow) is due to the momentum transfer from the electrons moving in a wire. Electromigration is the transport of material caused by the gradual movement of the ions in a conductor due to the momentum transfer between conducting electrons and diffusing metal atoms.
Black's Equation is a mathematical model for the mean time to failure (MTTF) of a semiconductor circuit due to electromigration: a phenomenon of molecular rearrangement (movement) in the solid phase caused by an electromagnetic field. The equation is: [1] = ()
The principal U(1)-connection ∇ on the line bundle has a curvature F = ∇ 2, which is a two-form that automatically satisfies dF = 0 and can be interpreted as a field strength. If the line bundle is trivial with flat reference connection d we can write ∇ = d + A and F = d A with A the 1-form composed of the electric potential and the ...
The Nernst–Planck equation is a conservation of mass equation used to describe the motion of a charged chemical species in a fluid medium. It extends Fick's law of diffusion for the case where the diffusing particles are also moved with respect to the fluid by electrostatic forces.
For example, the value of v sat is on the order of 1×10 7 cm/s for both electrons and holes in Si. It is on the order of 6×10 6 cm/s for Ge. This velocity is a characteristic of the material and a strong function of doping or impurity levels and temperature. It is one of the key material and semiconductor device properties that determine a ...
Electrochemical migration (ECM) is the dissolution and movement of metal ions in presence of electric potential, which results in the growth of dendritic structures between anode and cathode.
[1] [4] [8] Physically speaking this means that the main part of the area underneath a metallic contact through which current enters the metal via the metal-semiconductor interface is given by the transfer length multiplied with the width of the pad . This situation is also depicted in the figure in this section where the current density ...
For example, a naive quantum mechanical calculation of the ground-state energy density yields infinity, which is unreasonable. The difficulty lies in the fact that even though the Coulomb force diminishes with distance as 1/r 2, the average number of particles at each distance r is proportional to r 2, assuming the fluid is fairly isotropic. As ...