Search results
Results From The WOW.Com Content Network
In general a quadratic field of field discriminant can be obtained as a subfield of a cyclotomic field of -th roots of unity. This expresses the fact that the conductor of a quadratic field is the absolute value of its discriminant, a special case of the conductor-discriminant formula .
Simultaneously generalizing the case of imaginary quadratic fields and cyclotomic fields is the case of a CM field K, i.e. a totally imaginary quadratic extension of a totally real field. In 1974, Harold Stark conjectured that there are finitely many CM fields of class number 1. [12] He showed that there are finitely many of a fixed degree.
An integral quadratic form has integer coefficients, such as x 2 + xy + y 2; equivalently, given a lattice Λ in a vector space V (over a field with characteristic 0, such as Q or R), a quadratic form Q is integral with respect to Λ if and only if it is integer-valued on Λ, meaning Q(x, y) ∈ Z if x, y ∈ Λ.
To test if 2 is a quadratic residue modulo 17, we calculate 2 (17 − 1)/2 = 2 8 ≡ 1 (mod 17), so it is a quadratic residue. To test if 3 is a quadratic residue modulo 17, we calculate 3 (17 − 1)/2 = 3 8 ≡ 16 ≡ −1 (mod 17), so it is not a quadratic residue. Euler's criterion is related to the law of quadratic reciprocity.
Dirichlet's unit theorem shows that the unit group has rank 1 exactly when the number field is a real quadratic field, a complex cubic field, or a totally imaginary quartic field. When the unit group has rank ≥ 1, a basis of it modulo its torsion is called a fundamental system of units. [1]
The quadratic excess E(p) is the number of quadratic residues on the range (0,p/2) minus the number in the range (p/2,p) (sequence A178153 in the OEIS). For p congruent to 1 mod 4, the excess is zero, since −1 is a quadratic residue and the residues are symmetric under r ↔ p−r. For p congruent to 3 mod 4, the excess E is always positive. [29]
One of the basic examples of norms comes from quadratic field extensions () / where is a square-free integer.. Then, the multiplication map by on an element + is (+) = +.The element + can be represented by the vector
In mathematics, the Gauss class number problem (for imaginary quadratic fields), as usually understood, is to provide for each n ≥ 1 a complete list of imaginary quadratic fields (for negative integers d) having class number n. It is named after Carl Friedrich Gauss.