Search results
Results From The WOW.Com Content Network
This is called Abel's integral equation and allows us to compute the total time required for a particle to fall along a given curve (for which / would be easy to calculate). But Abel's mechanical problem requires the converse – given T ( y 0 ) {\displaystyle T(y_{0})\,} , we wish to find f ( y ) = d ℓ / d y {\displaystyle f(y)={d\ell }/{dy ...
In graph theory and theoretical computer science, the longest path problem is the problem of finding a simple path of maximum length in a given graph.A path is called simple if it does not have any repeated vertices; the length of a path may either be measured by its number of edges, or (in weighted graphs) by the sum of the weights of its edges.
Equation [3] involves the average velocity v + v 0 / 2 . Intuitively, the velocity increases linearly, so the average velocity multiplied by time is the distance traveled while increasing the velocity from v 0 to v, as can be illustrated graphically by plotting velocity against time as a straight line graph. Algebraically, it follows ...
Since the velocity of the object is the derivative of the position graph, the area under the line in the velocity vs. time graph is the displacement of the object. (Velocity is on the y-axis and time on the x-axis. Multiplying the velocity by the time, the time cancels out, and only displacement remains.)
The graph in the figure is a plot of speed versus time. Distance covered is the area under the line. Each time interval is coloured differently. The distance covered in the second and subsequent intervals is the area of its trapezium, which can be subdivided into triangles as shown.
A time–distance diagram is a chart with two axes: one for time, the other for location. The units on either axis depend on the type of project: time can be expressed in minutes (for overnight construction of railroad modification projects such as the installation of switches) or years (for large construction projects); the location can be (kilo)meters, or other distinct units (such as ...
The latter may occur even if the distance in the other direction between the same two vertices is defined. In the mathematical field of graph theory, the distance between two vertices in a graph is the number of edges in a shortest path (also called a graph geodesic) connecting them. This is also known as the geodesic distance or shortest-path ...
The 13 distinct cubic distance-regular graphs are K 4 (or Tetrahedral graph), K 3,3, the Petersen graph, the Cubical graph, the Heawood graph, the Pappus graph, the Coxeter graph, the Tutte–Coxeter graph, the Dodecahedral graph, the Desargues graph, Tutte 12-cage, the Biggs–Smith graph, and the Foster graph.