Search results
Results From The WOW.Com Content Network
Matlab / Octave Bindings to language: Full API for Java and Matlab (the latter via add-on product) PyMFEM (Python) Python, Scilab or Matlab Python bindings to some functionality Python Other: Predefined equations: Yes, many predefined physics and multiphysics interfaces in COMSOL Multiphysics and its add-ons.
Noting that any identity matrix is a rotation matrix, and that matrix multiplication is associative, we may summarize all these properties by saying that the n × n rotation matrices form a group, which for n > 2 is non-abelian, called a special orthogonal group, and denoted by SO(n), SO(n,R), SO n, or SO n (R), the group of n × n rotation ...
OpenSees allows users to create finite element applications for simulating the response of structural and geotechnical systems subjected to earthquakes. This framework was developed by Frank McKenna and Gregory L. Fenves with significant contributions from Michael H. Scott, Terje Haukaas, Armen Der Kiureghian, Remo M. de Souza, Filip C ...
In mathematics, a rotation of axes in two dimensions is a mapping from an xy-Cartesian coordinate system to an x′y′-Cartesian coordinate system in which the origin is kept fixed and the x′ and y′ axes are obtained by rotating the x and y axes counterclockwise through an angle .
Let P and Q be two sets, each containing N points in .We want to find the transformation from Q to P.For simplicity, we will consider the three-dimensional case (=).The sets P and Q can each be represented by N × 3 matrices with the first row containing the coordinates of the first point, the second row containing the coordinates of the second point, and so on, as shown in this matrix:
In the theory of three-dimensional rotation, Rodrigues' rotation formula, named after Olinde Rodrigues, is an efficient algorithm for rotating a vector in space, given an axis and angle of rotation. By extension, this can be used to transform all three basis vectors to compute a rotation matrix in SO(3) , the group of all rotation matrices ...
In the absence of the spring, the particles would fly apart. However, the force exerted by the extended spring pulls the particles onto a periodic, oscillatory path. In physics, rotational–vibrational coupling [1] occurs when the rotation frequency of a system is close to or identical to a natural frequency of internal vibration.
In mechanical engineering, backlash, sometimes called lash, play, or slop, is a clearance or lost motion in a mechanism caused by gaps between the parts. It can be defined as "the maximum distance or angle through which any part of a mechanical system may be moved in one direction without applying appreciable force or motion to the next part in mechanical sequence."