Search results
Results From The WOW.Com Content Network
Table of contents of the journal Annalen der Physik for the issue of June 1905. Einstein's paper on the photoelectric effect is sixth on this list. The article "Über einen die Erzeugung und Verwandlung des Lichtes betreffenden heuristischen Gesichtspunkt" ("On a Heuristic Viewpoint Concerning the Production and Transformation of Light") [einstein 1] received 18 March and published 9 June ...
In 1905, Albert Einstein published a paper advancing the hypothesis that light energy is carried in discrete quantized packets to explain experimental data from the photoelectric effect. Einstein theorized that the energy in each quantum of light was equal to the frequency of light multiplied by a constant, later called the Planck constant. A ...
The energy content of this volume element at 5 km from the station is 2.1 × 10 −10 × 0.109 = 2.3 × 10 −11 J, which amounts to 3.4 × 10 14 photons per (). Since 3.4 × 10 14 > 1, quantum effects do not play a role. The waves emitted by this station are well-described by the classical limit and quantum mechanics is not needed.
The classic photomultiplier tube exploits the photoelectric effect: a photon of sufficient energy strikes a metal plate and knocks free an electron, initiating an ever-amplifying avalanche of electrons. Semiconductor charge-coupled device chips use a similar effect: an incident photon generates a charge on a microscopic capacitor that can be ...
Einstein's paper on the photoelectric effect is sixth on this list. The following chronology of Einstein's scientific discoveries provides a context for the publications listed below, and clarifies the major themes running through his work. Einstein's scientific career can be broadly divided into two periods.
In 1905, Albert Einstein adapted the Planck postulate to explain the photoelectric effect, but Einstein proposed that the energy of photons themselves was quantized (with photon energy given by the Planck–Einstein relation), and that quantization was not merely a feature of microscopic oscillators.
Photoelectric effect Schematic illustration of the photoemission process. Using Einstein's method, the following equations are used: energy of photon = energy needed to remove an electron + kinetic energy of the emitted electron = + where h is the Planck constant;
In 1905, Albert Einstein published a paper, "On a heuristic viewpoint concerning the emission and transformation of light", which explained the photoelectric effect on quantized electromagnetic waves. [1] The energy quantum referred to in this paper was later called "photon".