Search results
Results From The WOW.Com Content Network
The implicit function theorem of more than two real variables deals with the continuity and differentiability of the function, as follows. [4] Let ϕ(x 1, x 2, …, x n) be a continuous function with continuous first order partial derivatives, and let ϕ evaluated at a point (a, b) = (a 1, a 2, …, a n, b) be zero:
Here the 'IEEE 754 double value' resulting of the 15 bit figure is 3.330560653658221E-15, which is rounded by Excel for the 'user interface' to 15 digits 3.33056065365822E-15, and then displayed with 30 decimals digits gets one 'fake zero' added, thus the 'binary' and 'decimal' values in the sample are identical only in display, the values ...
In numerical analysis, multivariate interpolation or multidimensional interpolation is interpolation on multivariate functions, having more than one variable or defined over a multi-dimensional domain. [1] A common special case is bivariate interpolation or two-dimensional interpolation, based on two variables or two dimensions.
The scope of the function name is limited to the let expression structure. In mathematics, the let expression defines a condition, which is a constraint on the expression. The syntax may also support the declaration of existentially quantified variables local to the let expression. The terminology, syntax and semantics vary from language to ...
In contrast to linear programming, which can be solved efficiently in the worst case, integer programming problems are in many practical situations (those with bounded variables) NP-hard. 0–1 integer programming or binary integer programming (BIP) is the special case of integer programming where variables are required to be 0 or 1 (rather ...
Multivalued functions of a complex variable have branch points. For example, for the nth root and logarithm functions, 0 is a branch point; for the arctangent function, the imaginary units i and −i are branch points. Using the branch points, these functions may be redefined to be single-valued functions, by restricting the range.
Multi-objective optimization or Pareto optimization (also known as multi-objective programming, vector optimization, multicriteria optimization, or multiattribute optimization) is an area of multiple-criteria decision making that is concerned with mathematical optimization problems involving more than one objective function to be optimized simultaneously.
Let z 0 be a root of a holomorphic function f, and let n be the least positive integer such that the n th derivative of f evaluated at z 0 differs from zero. Then the power series of f about z 0 begins with the n th term, and f is said to have a root of multiplicity (or “order”) n. If n = 1, the root is called a simple root. [4]