When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Myelin - Wikipedia

    en.wikipedia.org/wiki/Myelin

    The discontinuous structure of the myelin sheath results in the action potential "jumping" from one node of Ranvier over a long (c. 0.1 mm – >1 mm, or 100–1000 micron) myelinated stretch of the axon called the internodal segment or "internode", before "recharging" at the next node of Ranvier.

  3. Node of Ranvier - Wikipedia

    en.wikipedia.org/wiki/Node_of_Ranvier

    The size of the nodes span from 1–2 μm whereas the internodes can be up to (and occasionally even greater than)1.5 millimetres long, depending on the axon diameter and fiber type. The structure of the node and the flanking paranodal regions are distinct from the internodes under the compact myelin sheath, but are very similar in CNS and PNS.

  4. White matter - Wikipedia

    en.wikipedia.org/wiki/White_matter

    White matter is the tissue through which messages pass between different areas of grey matter within the central nervous system. The white matter is white because of the fatty substance (myelin) that surrounds the nerve fibers (axons). This myelin is found in almost all long nerve fibers, and acts as an electrical insulation.

  5. Axon - Wikipedia

    en.wikipedia.org/wiki/Axon

    Cross section of an axon: (1) Axon (2) Nucleus (3) Schwann cell (4) Myelin sheath (5) Neurilemma. In the nervous system, axons may be myelinated, or unmyelinated. This is the provision of an insulating layer, called a myelin sheath. The myelin membrane is unique in its relatively high lipid to protein ratio. [17]

  6. Group A nerve fiber - Wikipedia

    en.wikipedia.org/wiki/Group_A_nerve_fiber

    There are four subdivisions of group A nerve fibers: alpha (α) Aα; beta (β) Aβ; , gamma (γ) Aγ, and delta (δ) Aδ. These subdivisions have different amounts of myelination and axon thickness and therefore transmit signals at different speeds. Larger diameter axons and more myelin insulation lead to faster signal propagation.

  7. Myelinogenesis - Wikipedia

    en.wikipedia.org/wiki/Myelinogenesis

    Myelin is formed by oligodendrocytes in the central nervous system and Schwann cells in the peripheral nervous system.Therefore, the first stage of myelinogenesis is often defined as the differentiation of oligodendrocyte progenitor cells (OPCs) or Schwann cell progenitors into their mature counterparts, [4] followed by myelin formation around axons.

  8. Oligodendrocyte - Wikipedia

    en.wikipedia.org/wiki/Oligodendrocyte

    A single oligodendrocyte can extend its processes to cover up to 40 axons, that can include multiple adjacent axons. [2] The myelin sheath is not continuous but is segmented along the axon's length at gaps known as the nodes of Ranvier. In the peripheral nervous system the myelination of axons is carried out by Schwann cells. [1]

  9. Saltatory conduction - Wikipedia

    en.wikipedia.org/wiki/Saltatory_conduction

    Myelinated axons only allow action potentials to occur at the unmyelinated nodes of Ranvier that occur between the myelinated internodes. It is by this restriction that saltatory conduction propagates an action potential along the axon of a neuron at rates significantly higher than would be possible in unmyelinated axons (150 m/s compared from 0.5 to 10 m/s). [1]