Ads
related to: electrochemical resistance of graphene films
Search results
Results From The WOW.Com Content Network
The electronic properties of graphene are significantly influenced by the supporting substrate. [59] [60] The Si(100)/H surface does not perturb graphene's electronic properties, whereas the interaction between it and the clean Si(100) surface changes its electronic states significantly. This effect results from the covalent bonding between C ...
Graphene solar cells use graphene's unique combination of high electrical conductivity and optical transparency. [103] This material absorbs only 2.6% of green light and 2.3% of red light. [104] Graphene can be assembled into a film electrode with low roughness. These films must be made thicker than one atomic layer to obtain useful sheet ...
Graphene is an allotrope of carbon that consists of a single layer of graphite. [15] It has been used in sensors to detect vapour-phase molecules, [ 16 ] [ 17 ] [ 18 ] pH, [ 19 ] proteins, [ 19 ] bacteria, [ 20 ] and simulated chemical warfare agents.
This was achieved by depositing layers of graphene oxide onto a shrink film, then shrunken, with the film dissolved before being shrunken again on another sheet of film. The crumpled graphene became superhydrophobic, and when used as a battery electrode, the material was shown to have as much as a 400% increase in electrochemical current density.
The increase in resistance is proportional to the thickness of the deposited film, and thus, at a given voltage, the electric current decreases as the film gets thicker until it finally reaches a point where deposition has slowed or stopped occurring (self-limiting). Thus the applied voltage is the primary control for the amount of film applied.
Single and double atom layers of platinum in a two-dimensional film geometry has been demonstrated. [56] [57] These atomically thin platinum films are epitaxially grown on graphene, [56] which imposes a compressive strain that modifies the surface chemistry of the platinum, while also allowing charge transfer through the graphene. [57]
Rodney S. "Rod" Ruoff is an American physical chemist and nanoscience researcher. He is one of the world experts on carbon materials including carbon nanostructures such as fullerenes, nanotubes, graphene, diamond, and has had pioneering discoveries on such materials and others.
This is an advantage, because sheet resistance of 1 Ω could be taken out of context and misinterpreted as bulk resistance of 1 ohm, whereas sheet resistance of 1 Ω/sq cannot thus be misinterpreted. The reason for the name "ohms per square" is that a square sheet with sheet resistance 10 ohm/square has an actual resistance of 10 ohm ...