When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Fixed-point iteration - Wikipedia

    en.wikipedia.org/wiki/Fixed-point_iteration

    In numerical analysis, fixed-point iteration is a method of computing fixed points of a function.. More specifically, given a function defined on the real numbers with real values and given a point in the domain of , the fixed-point iteration is + = (), =,,, … which gives rise to the sequence,,, … of iterated function applications , (), (()), … which is hoped to converge to a point .

  3. Newton's method - Wikipedia

    en.wikipedia.org/wiki/Newton's_method

    If f has an incomplete domain, it is possible for Newton's method to send the iterates outside of the domain, so that it is impossible to continue the iteration. [19] For example, the natural logarithm function f(x) = ln x has a root at 1, and is defined only for positive x. Newton's iteration in this case is given by

  4. Newton's method in optimization - Wikipedia

    en.wikipedia.org/wiki/Newton's_method_in...

    The geometric interpretation of Newton's method is that at each iteration, it amounts to the fitting of a parabola to the graph of () at the trial value , having the same slope and curvature as the graph at that point, and then proceeding to the maximum or minimum of that parabola (in higher dimensions, this may also be a saddle point), see below.

  5. Iterated limit - Wikipedia

    en.wikipedia.org/wiki/Iterated_limit

    In multivariable calculus, an iterated limit is a limit of a sequence or a limit of a function in the form , = (,), (,) = ((,)),or other similar forms. An iterated limit is only defined for an expression whose value depends on at least two variables. To evaluate such a limit, one takes the limiting process as one of the two variables approaches some number, getting an expression whose value ...

  6. Iterative method - Wikipedia

    en.wikipedia.org/wiki/Iterative_method

    If an equation can be put into the form f(x) = x, and a solution x is an attractive fixed point of the function f, then one may begin with a point x 1 in the basin of attraction of x, and let x n+1 = f(x n) for n ≥ 1, and the sequence {x n} n ≥ 1 will converge to the solution x.

  7. Simplex algorithm - Wikipedia

    en.wikipedia.org/wiki/Simplex_algorithm

    The solution of a linear program is accomplished in two steps. In the first step, known as Phase I, a starting extreme point is found. Depending on the nature of the program this may be trivial, but in general it can be solved by applying the simplex algorithm to a modified version of the original program.

  8. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    For the second iteration the values of the first iteration are used in the formula ⁠ 16 × (more accurate) − (less accurate) / 15 ⁠ The third iteration uses the next power of 4: ⁠ 64 × (more accurate) − (less accurate) / 63 ⁠ on the values derived by the second iteration. The pattern is continued until there is one estimate.

  9. Jacobi method - Wikipedia

    en.wikipedia.org/wiki/Jacobi_method

    In numerical linear algebra, the Jacobi method (a.k.a. the Jacobi iteration method) is an iterative algorithm for determining the solutions of a strictly diagonally dominant system of linear equations. Each diagonal element is solved for, and an approximate value is plugged in. The process is then iterated until it converges.