Search results
Results From The WOW.Com Content Network
The application of kinetic theory to ideal gases makes the following assumptions: The gas consists of very small particles. This smallness of their size is such that the sum of the volume of the individual gas molecules is negligible compared to the volume of the container of the gas.
James Clerk Maxwell introduced this approximation in 1867 [3] although its origins can be traced back to his first work on the kinetic theory in 1860. [4] [5] The assumption of molecular chaos is the key ingredient that allows proceeding from the BBGKY hierarchy to Boltzmann's equation, by reducing the 2-particle distribution function showing ...
According to the assumptions of the kinetic theory of ideal gases, one can consider that there are no intermolecular attractions between the molecules, or atoms, of an ideal gas. In other words, its potential energy is zero. Hence, all the energy possessed by the gas is the kinetic energy of the molecules, or atoms, of the gas.
This article inspired further work based on the twin ideas that substances are composed of indivisible particles, and that heat is a consequence of the particle motion; movement that evolves in accordance with Newton's laws. The work, known as the kinetic theory of gases, was done principally by Clausius, James Clerk Maxwell, and Ludwig Boltzmann.
Two major assumptions are used in this method: The compound vapor behaves as an ideal gas (follows all 5 postulates of the kinetic theory of gases); Either the volume of the vessel does not vary significantly between room temperature and the working temperature, or the volume of the vessel may be accurately determined at the working temperature
Drude applied the kinetic theory of a dilute gas, despite the high densities, therefore ignoring electron–electron and electron–ion interactions aside from collisions. [Ashcroft & Mermin 13] The Drude model considers the metal to be formed of a collection of positively charged ions from which a number of "free electrons" were detached.
The kinetic theory of gases applies to the classical ideal gas, which is an idealization of real gases. In real gases, there are various effects (e.g., van der Waals interactions , vortical flow, relativistic speed limits, and quantum exchange interactions ) that can make their speed distribution different from the Maxwell–Boltzmann form.
The difference between the kinetic and thermodynamic derivations of the Langmuir model is that the thermodynamic uses activities as a starting point while the kinetic derivation uses rates of reaction. The thermodynamic derivation allows for the activity coefficients of adsorbates in their bound and free states to be included.