Search results
Results From The WOW.Com Content Network
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text. This page lists notable large language models.
T5 (Text-to-Text Transfer Transformer) is a series of large language models developed by Google AI introduced in 2019. [1] [2] Like the original Transformer model, [3] T5 models are encoder-decoder Transformers, where the encoder processes the input text, and the decoder generates the output text.
A large language model (LLM) is a type of machine learning model designed for natural language processing tasks such as language generation. LLMs are language models with many parameters, and are trained with self-supervised learning on a vast amount of text.
Llama (Large Language Model Meta AI, formerly stylized as LLaMA) is a family of large language models (LLMs) released by Meta AI starting in February 2023. [2] [3] The latest version is Llama 3.3, released in December 2024. [4] Llama models are trained at different parameter sizes, ranging between 1B and 405B. [5]
The Pile is an 886.03 GB diverse, open-source dataset of English text created as a training dataset for large language models (LLMs). It was constructed by EleutherAI in 2020 and publicly released on December 31 of that year. [1] [2] It is composed of 22 smaller datasets, including 14 new ones. [1]
PaLM (Pathways Language Model) is a 540 billion-parameter dense decoder-only transformer-based large language model (LLM) developed by Google AI. [1] Researchers also trained smaller versions of PaLM (with 8 and 62 billion parameters) to test the effects of model scale.
BigScience Large Open-science Open-access Multilingual Language Model (BLOOM) [1] [2] is a 176-billion-parameter transformer-based autoregressive large language model (LLM). The model, as well as the code base and the data used to train it, are distributed under free licences. [ 3 ]
Its training dataset consisted of Arabic and English, some containing computer code. [ 1 ] [ 3 ] According to Timothy Baldwin, provost, and professor of natural language processing at MBZUAI, training the model on a diverse Arabic dataset allows it to switch between dialects.