When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Integral of secant cubed - Wikipedia

    en.wikipedia.org/wiki/Integral_of_secant_cubed

    Integrals of the form: ⁡ ⁡ can be reduced using the Pythagorean identity if is even or and are both odd. If n {\displaystyle n} is odd and m {\displaystyle m} is even, hyperbolic substitutions can be used to replace the nested integration by parts with hyperbolic power-reducing formulas.

  3. Integration using Euler's formula - Wikipedia

    en.wikipedia.org/wiki/Integration_using_Euler's...

    In integral calculus, Euler's formula for complex numbers may be used to evaluate integrals involving trigonometric functions. Using Euler's formula, any trigonometric function may be written in terms of complex exponential functions, namely e i x {\displaystyle e^{ix}} and e − i x {\displaystyle e^{-ix}} and then integrated.

  4. Lists of integrals - Wikipedia

    en.wikipedia.org/wiki/Lists_of_integrals

    Integration is the basic operation in integral calculus.While differentiation has straightforward rules by which the derivative of a complicated function can be found by differentiating its simpler component functions, integration does not, so tables of known integrals are often useful.

  5. Integral of the secant function - Wikipedia

    en.wikipedia.org/wiki/Integral_of_the_secant...

    The integral of the secant function was historically one of the first integrals of its type ever evaluated, before most of the development of integral calculus. It is important because it is the vertical coordinate of the Mercator projection, used for marine navigation with constant compass bearing.

  6. Integration by parts - Wikipedia

    en.wikipedia.org/wiki/Integration_by_parts

    Integration by parts is a heuristic rather than a purely mechanical process for solving integrals; given a single function to integrate, the typical strategy is to carefully separate this single function into a product of two functions u(x)v(x) such that the residual integral from the integration by parts formula is easier to evaluate than the ...

  7. List of integrals of exponential functions - Wikipedia

    en.wikipedia.org/wiki/List_of_integrals_of...

    where is the Euler–Mascheroni constant which equals the value of a number of definite integrals. Finally, a well known result, ∫ 0 2 π e i ( m − n ) ϕ d ϕ = 2 π δ m , n for m , n ∈ Z {\displaystyle \int _{0}^{2\pi }e^{i(m-n)\phi }d\phi =2\pi \delta _{m,n}\qquad {\text{for }}m,n\in \mathbb {Z} } where δ m , n {\displaystyle \delta ...

  8. Integration by substitution - Wikipedia

    en.wikipedia.org/wiki/Integration_by_substitution

    In calculus, integration by substitution, also known as u-substitution, reverse chain rule or change of variables, [1] is a method for evaluating integrals and antiderivatives. It is the counterpart to the chain rule for differentiation , and can loosely be thought of as using the chain rule "backwards."

  9. Wallis' integrals - Wikipedia

    en.wikipedia.org/wiki/Wallis'_integrals

    By means of integration by parts, a reduction formula can be obtained. Using the identity ⁡ = ⁡, we have for all , ⁡ = (⁡) (⁡) = ⁡ ⁡ ⁡. Integrating the second integral by parts, with: