Search results
Results From The WOW.Com Content Network
First, the async keyword indicates to C# that the method is asynchronous, meaning that it may use an arbitrary number of await expressions and will bind the result to a promise. [1]: 165–168 The return type, Task<T>, is C#'s analogue to the concept of a promise, and here is indicated to have a result value of type int.
Asynchronous method dispatch (AMD), a data communication method used when there is a need for the server side to handle a large number of long lasting client requests. [3] Using synchronous method dispatch (SMD), this scenario may turn the server into an unavailable busy state resulting in a connection failure response caused by a network ...
In computer science, asynchronous I/O (also non-sequential I/O) is a form of input/output processing that permits other processing to continue before the I/O operation has finished. A name used for asynchronous I/O in the Windows API is overlapped I/O .
In multithreaded computer programming, asynchronous method invocation (AMI), also known as asynchronous method calls or the asynchronous pattern is a design pattern in which the call site is not blocked while waiting for the called code to finish. Instead, the calling thread is notified when the reply arrives.
.NET via Tasks C#, since .NET Framework 4.5, [22] via the keywords async and await [23] Kotlin, however kotlin.native.concurrent.Future is only usually used when writing Kotlin that is intended to run natively [35] Nim; Oxygene; Oz version 3 [36] Python concurrent.futures, since 3.2, [37] as proposed by the PEP 3148, and Python 3.5 added async ...
Asynchronous learning, an educational method in which the teacher and student are separated in time; Asynchronous motor, a type of electric motor; Asynchronous multiplayer, a form of multiplayer gameplay in video games; Asynchronous muscles, muscles in which there is no one-to-one relationship between stimulation and contraction
The function that accepts a callback may be designed to store the callback so that it can be called back after returning which is known as asynchronous, non-blocking or deferred. Programming languages support callbacks in different ways such as function pointers, lambda expressions and blocks.
Asynchronous message passing may be reliable or unreliable (sometimes referred to as "send and pray"). Message-passing concurrency tends to be far easier to reason about than shared-memory concurrency, and is typically considered a more robust form of concurrent programming.