Search results
Results From The WOW.Com Content Network
In electronics and telecommunications, jitter is the deviation from true periodicity of a presumably periodic signal, often in relation to a reference clock signal. In clock recovery applications it is called timing jitter. [1] Jitter is a significant, and usually undesired, factor in the design of almost all communications links.
Jitter is often measured as a fraction of UI. For example, jitter of 0.01 UI is jitter that moves a signal edge by 1% of the UI duration. The widespread use of UI in jitter measurements comes from the need to apply the same requirements or results to cases of different symbol rates. This can be d
In optics, jitter is used to refer to motion that has high temporal frequency relative to the integration/exposure time. This may result from vibration in an assembly or the unstable hand of a photographer. Jitter is typically differentiated from smear, which has a lower frequency relative to the integration time. [1]
It is then possible to measure the skew between the input trigger and the local clock and adjust the vernier delay on a shot-by-shot basis, to compensate for most of the trigger-to-clock jitter. Jitter in the tens of picoseconds RMS can be achieved with careful calibration. Stanford Research Systems use this technique.
Unit cell definition using parallelepiped with lengths a, b, c and angles between the sides given by α, β, γ [1]. A lattice constant or lattice parameter is one of the physical dimensions and angles that determine the geometry of the unit cells in a crystal lattice, and is proportional to the distance between atoms in the crystal.
A matter wave clock is a type of clock whose principle of operation makes use of the apparent wavelike properties of matter. Matter waves were first proposed by Louis de Broglie and are sometimes called de Broglie waves. They form a key aspect of wave–particle duality and experiments have since supported the idea.
A molecular vibration is a periodic motion of the atoms of a molecule relative to each other, such that the center of mass of the molecule remains unchanged. The typical vibrational frequencies range from less than 10 13 Hz to approximately 10 14 Hz, corresponding to wavenumbers of approximately 300 to 3000 cm −1 and wavelengths of approximately 30 to 3 μm.
The general form of the Eyring–Polanyi equation somewhat resembles the Arrhenius equation: = ‡ where is the rate constant, ‡ is the Gibbs energy of activation, is the transmission coefficient, is the Boltzmann constant, is the temperature, and is the Planck constant.