Search results
Results From The WOW.Com Content Network
One can take the union of several sets simultaneously. For example, the union of three sets A, B, and C contains all elements of A, all elements of B, and all elements of C, and nothing else. Thus, x is an element of A ∪ B ∪ C if and only if x is in at least one of A, B, and C.
The intersection is the meet/infimum of and with respect to because: if L ∩ R ⊆ L {\displaystyle L\cap R\subseteq L} and L ∩ R ⊆ R , {\displaystyle L\cap R\subseteq R,} and if Z {\displaystyle Z} is a set such that Z ⊆ L {\displaystyle Z\subseteq L} and Z ⊆ R {\displaystyle Z\subseteq R} then Z ⊆ L ∩ R . {\displaystyle Z ...
Intersection types are useful for describing overloaded functions. [2] For example, if number => number is the type of function taking a number as an argument and returning a number, and string => string is the type of function taking a string as an argument and returning a string, then the intersection of these two types can be used to ...
Intersections of the unaccented modern Greek, Latin, and Cyrillic scripts, considering only the shapes of the letters and ignoring their pronunciation Example of an intersection with sets The intersection of two sets A {\displaystyle A} and B , {\displaystyle B,} denoted by A ∩ B {\displaystyle A\cap B} , [ 3 ] is the set of all objects that ...
The simplest version of the minhash scheme uses k different hash functions, where k is a fixed integer parameter, and represents each set S by the k values of h min (S) for these k functions. To estimate J(A,B) using this version of the scheme, let y be the number of hash functions for which h min (A) = h min (B), and use y/k as the estimate.
The problem for graphs is NP-complete if the edge lengths are assumed integers. The problem for points on the plane is NP-complete with the discretized Euclidean metric and rectilinear metric. The problem is known to be NP-hard with the (non-discretized) Euclidean metric. [3]: ND22, ND23
If is a set, then there exists precisely one function from to , the empty function. As a result, the empty set is the unique initial object of the category of sets and functions. The empty set can be turned into a topological space , called the empty space, in just one way: by defining the empty set to be open .
In mathematics, transversality is a notion that describes how spaces can intersect; transversality can be seen as the "opposite" of tangency, and plays a role in general position. It formalizes the idea of a generic intersection in differential topology. It is defined by considering the linearizations of the intersecting spaces at the points of ...