Ad
related to: cylindrical manipulator equation physics lab examstudy.com has been visited by 100K+ users in the past month
Search results
Results From The WOW.Com Content Network
Being inviscid and irrotational, Bernoulli's equation allows the solution for the pressure field to be obtained directly from the velocity field: = +, where the constants U and p ∞ appear so that p → p ∞ far from the cylinder, where V = U. Using V 2 = V 2 r + V 2
The equations of translational kinematics can easily be extended to planar rotational kinematics for constant angular acceleration with simple variable exchanges: = + = + = (+) = + (). Here θ i and θ f are, respectively, the initial and final angular positions, ω i and ω f are, respectively, the initial and final angular velocities, and α ...
The capstan equation [1] or belt friction equation, also known as Euler–Eytelwein formula [2] (after Leonhard Euler and Johann Albert Eytelwein), [3] relates the hold-force to the load-force if a flexible line is wound around a cylinder (a bollard, a winch or a capstan).
Washburn's equation is also used commonly to determine the contact angle of a liquid to a powder using a force tensiometer. [ 5 ] In the case of porous materials, many issues have been raised both about the physical meaning of the calculated pore radius r {\displaystyle r} [ 6 ] and the real possibility to use this equation for the calculation ...
For the thin-walled assumption to be valid, the vessel must have a wall thickness of no more than about one-tenth (often cited as Diameter / t > 20) of its radius. [4] This allows for treating the wall as a surface, and subsequently using the Young–Laplace equation for estimating the hoop stress created by an internal pressure on a thin-walled cylindrical pressure vessel:
The Canadarm while deploying a payload from the cargo bay of the Space Shuttle. A robotic arm is a type of mechanical arm, usually programmable, with similar functions to a human arm; the arm may be the sum total of the mechanism or may be part of a more complex robot.
For a cylindrical impactor, by the time it stops, it will have penetrated to a depth that is equal to its own length times its relative density with respect to the target material. This approach is only valid for a narrow range of velocities less than the speed of sound within the target or impactor material.
While Lamb's analysis assumed a straight wavefront, it has been shown [8] that the same characteristic equations apply to cylindrical plate waves (i.e. waves propagating outwards from a line source, the line lying perpendicular to the plate). The difference is that whereas the "carrier" for the straight wavefront is a sinusoid, the "carrier ...