When.com Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Orthogonal coordinates - Wikipedia

    en.wikipedia.org/wiki/Orthogonal_coordinates

    For example, the three-dimensional Cartesian coordinates (x, y, z) is an orthogonal coordinate system, since its coordinate surfaces x = constant, y = constant, and z = constant are planes that meet at right angles to one another, i.e., are perpendicular. Orthogonal coordinates are a special but extremely common case of curvilinear coordinates.

  3. Orthonormality - Wikipedia

    en.wikipedia.org/wiki/Orthonormality

    A unit vector means that the vector has a length of 1, which is also known as normalized. Orthogonal means that the vectors are all perpendicular to each other. A set of vectors form an orthonormal set if all vectors in the set are mutually orthogonal and all of unit length.

  4. Orthogonality (mathematics) - Wikipedia

    en.wikipedia.org/wiki/Orthogonality_(mathematics)

    A set of vectors in an inner product space is called pairwise orthogonal if each pairing of them is orthogonal. Such a set is called an orthogonal set (or orthogonal system). If the vectors are normalized, they form an orthonormal system. An orthogonal matrix is a matrix whose column vectors are orthonormal to each other.

  5. Skew coordinates - Wikipedia

    en.wikipedia.org/wiki/Skew_coordinates

    The simplest 3D case of a skew coordinate system is a Cartesian one where one of the axes (say the x axis) has been bent by some angle , staying orthogonal to one of the remaining two axes. For this example, the x axis of a Cartesian coordinate has been bent toward the z axis by , remaining orthogonal to the y axis.

  6. Rotation matrix - Wikipedia

    en.wikipedia.org/wiki/Rotation_matrix

    If we condense the skew entries into a vector, (x,y,z), then we produce a 90° rotation around the x-axis for (1, 0, 0), around the y-axis for (0, 1, 0), and around the z-axis for (0, 0, 1). The 180° rotations are just out of reach; for, in the limit as x → ∞ , ( x , 0, 0) does approach a 180° rotation around the x axis, and similarly for ...

  7. Vector projection - Wikipedia

    en.wikipedia.org/wiki/Vector_projection

    Thus, the vector is parallel to , the vector is orthogonal to , and = +. The projection of a onto b can be decomposed into a direction and a scalar magnitude by writing it as a 1 = a 1 b ^ {\displaystyle \mathbf {a} _{1}=a_{1}\mathbf {\hat {b}} } where a 1 {\displaystyle a_{1}} is a scalar, called the scalar projection of a onto b , and b̂ is ...

  8. Walsh function - Wikipedia

    en.wikipedia.org/wiki/Walsh_function

    It is an extension of the Rademacher system of orthogonal functions. [2] Walsh functions, the Walsh system, the Walsh series, [3] and the fast Walsh–Hadamard transform are all named after the American mathematician Joseph L. Walsh. They find various applications in physics and engineering when analyzing digital signals.

  9. In-phase and quadrature components - Wikipedia

    en.wikipedia.org/wiki/In-phase_and_quadrature...

    And in functional analysis, when x is a linear function of some variable, such as time, these components are sinusoids, and they are orthogonal functions. A phase-shift of xx + π /2 changes the identity to: cos(x + φ) = cos(x) cos(φ) + cos(x + π /2) sin(φ), in which case cos(x) cos(φ) is the in-phase component.