Search results
Results From The WOW.Com Content Network
These matrices are traceless, Hermitian, and obey the extra trace orthonormality relation, so they can generate unitary matrix group elements of SU(3) through exponentiation. [1] These properties were chosen by Gell-Mann because they then naturally generalize the Pauli matrices for SU(2) to SU(3), which formed the basis for Gell-Mann's quark ...
The center of SU(n) is isomorphic to the cyclic group /, and is composed of the diagonal matrices ζ I for ζ an n th root of unity and I the n × n identity matrix. Its outer automorphism group for n ≥ 3 is Z / 2 Z , {\displaystyle \mathbb {Z} /2\mathbb {Z} ,} while the outer automorphism group of SU(2) is the trivial group .
Gell-Mann referred to the scheme as the eightfold way, because of the octets of particles in the classification (the term is a reference to the Eightfold Path of Buddhism). [3] [15] Gell-Mann, along with Maurice Lévy, developed the sigma model of pions, which describes low-energy pion interactions. [49]
The collection of matrices defined above without the identity matrix are called the generalized Gell-Mann matrices, in dimension . [2] [3] The symbol ⊕ (utilized in the Cartan subalgebra above) means matrix direct sum. The generalized Gell-Mann matrices are Hermitian and traceless by
See the following example: [+ + +] The diagonal elements must be real, as they must be their own complex conjugate. Well-known families of Hermitian matrices include the Pauli matrices, the Gell-Mann matrices and
The upper and lower indices are frequently not distinguished, unless the algebra is endowed with some other structure that would require this (for example, a pseudo-Riemannian metric, on the algebra of the indefinite orthogonal group so(p,q)). That is, structure constants are often written with all-upper, or all-lower indexes.
Gell-Mann matrices — a generalization of the Pauli matrices; these matrices are one notable representation of the infinitesimal generators of the special unitary group SU(3). Hamiltonian matrix — a matrix used in a variety of fields, including quantum mechanics and linear-quadratic regulator (LQR) systems.
The color of a gluon is similarly given by , which corresponds to the particular Gell-Mann matrix it is associated with. This matrix has indices i and j. These are the color labels on the gluon. At the interaction vertex one has q i → g ij + q j. The color-line representation tracks these indices. Color charge conservation means that the ends ...